This content will become publicly available on February 3, 2026
A predictive model for divalent element partitioning between clinopyroxene and basaltic melt and a Europium-in-Plagioclase-Clinopyroxene Oxybarometer for cumulate rocks
- Award ID(s):
- 2054551
- PAR ID:
- 10640769
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Geochimica et cosmochimica acta
- ISSN:
- 0016-7037
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Several geothermobarometric tools have focused on clinopyroxene due to its prevalence in igneous rocks, however clinopyroxene produced in high-silica igneous systems is high in iron and low in aluminum, causing existing geothermometers that depend on aluminum exchange to fail or yield overestimated temperatures. Here we present a new clinopyroxene-liquid geothermometer recommended for use in natural igneous systems with bulk SiO2 ≥ 70 wt%, which contain clinopyroxene with Mg# ≤ 65 and Al2O3 ≤ 7 wt%. (1) T ( ∘ C ) = 300 [ − 1.89 − 0.601 ( X CaTs Cpx ) − 0.186 ( X DiHd 2003 Cpx ) + 4.71 ( X SiO 2 liq ) + 77.6 ( X TiO 2 liq ) + 10.9 ( X FeO liq ) + 33.6 ( X MgO liq ) + 15.5 ( X CaO liq ) + 15.6 ( X KO 0.5 liq ) ] The new geothermometer lowers calculated temperatures by ~85 °C on average relative to Putirka (2008, Eq. 33) and reduces the uncertainty by a factor of two (standard error of estimate ±20 °C). When applied to natural systems, we find this new clinopyroxene-liquid geothermometer reconciles many inconsistencies between experimental phase equilibria and preexisting geothermometry results for silicic volcanism, including those from the Bishop Tuff and Yellowstone caldera-forming and post-caldera rhyolites. We also demonstrate that clinopyroxene is not restricted to near-liquidus temperatures in rhyolitic systems; clinopyroxene can be stable over a broad temperature range, often down to the solidus. An Excel spreadsheet and Python notebook for calculating temperature with this new geothermometer may be downloaded from GitHub at http://bit.ly/cpxrhyotherm.more » « less
-
Anticounterfeiting plays an essential role in authenticating genuine documents and combating forged products. To further advance the anticounterfeiting technology, there is a strong demand to design new functional materials with unique properties that will be appropriate for making multimode complex security labels. Recently, dynamic security labels have emerged as a new type of advanced anticounterfeiting method as they can hold a much higher security level than the traditional static ones. In this work, we report that calcium zinc germanate (CZGO) clinopyroxenes doped with lead ions have several interesting optical properties, such as dynamic fluorescence, long persistent luminescence, and photochromism. We find that the concentration of lead dopants can significantly impact the reaction kinetics as well as the crystallinity and luminescence properties of CZGO phosphors. By fully utilizing these unique properties, we have successfully fabricated several security labels with multilevel information encoding and dynamic optical performance. The combination of multimode and dynamic luminescence makes these labels extremely challenging to illegally duplicate. With further optimization, this lead-doped CZGO clinopyroxene can be well-integrated into modern anticounterfeiting techniques that will generate highly secure anticounterfeiting labels to combat fake products.more » « less
-
Abstract Spongy clinopyroxene is common in most mantle-derived xenoliths and megacrysts of eclogitic and peridotitic parageneses. Its formation is commonly attributed to the partial melting of a primary clinopyroxene in response to various factors, including changes in pressure and temperature or infiltration of external melts or fluids. In order to study the mechanism of spongy clinopyroxene formation in detail, we selected six eclogitic clinopyroxene inclusions in diamonds with varying amounts of spongy clinopyroxene (from ~10 to 100%). We employed computed tomography, electron microprobe analysis, and Raman spectroscopy to study the textural characteristics, major element concentrations, and the types of volatiles present in both phases. We also used pMELTS to model the compositions of spongy clinopyroxene and associated melts produced by the melting of primary clinopyroxene over a range of pressures and temperatures. We compare these results with estimates from major element thermobarometry of the spongy clinopyroxene. We conclude that the studied spongy clinopyroxene is the solid product of partial melting that occurs upon decompression of the primary clinopyroxene within the diamond in a near-closed system. Melting of the primary clinopyroxene occurred continuously or in pulses at different depths during the diamond’s ascent to Earth’s surface and produced variable spongy clinopyroxene and melt compositions even within the same inclusion. This is possible due to relatively rapid kimberlite ascent. The degrees of melting are various and unexpectedly high for mantle melting (between <10 and 60% with an average of ~20–30%). The produced melts are highly silicic, phonolitic, and alkali-rich. pMELTS modelling shows the spongy clinopyroxene compositions can be reproduced at pressures between 0.5–2.7 GPa and temperatures of 850–1300°C, with the majority of them satisfying the P–T conditions of 1–2 GPa and 1100–1300°C. This indicates decompression melting of primary clinopyroxene at shallow upper mantle or lower crustal conditions.more » « less
An official website of the United States government
