skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Different tools for different trades: contrasts in specialized metabolite chemodiversity and phylogenetic dispersion in fruit, leaves, and roots of the neotropical shrubs Psychotria and Palicourea (Rubiaceae)
Abstract Plants produce an astonishingly diverse array of specialized metabolites. A crucial step in understanding the origin of such chemodiversity is describing how chemodiversity manifests across the spatial and ontogenetic scales relevant to plant–biotic interactions.Focusing on 21 sympatric species ofPsychotriaandPalicourea sensu lato(Rubiaceae), we describe patterns of specialized metabolite diversity across spatial and ontogenetic scales using a combination of field collections, untargeted metabolomics, and ecoinformatics. We compare α, β, and γ diversity of specialized metabolites in expanding leaves, unripe pulp, immature seed, ripe pulp, mature seed, and fine roots.Within species, fruit tissues from across ontogenetic stages had ≥α diversity than leaves, and ≤β diversity than leaves. Pooled across species, fruit tissues and ontogenetic stages had the highest γ diversity of all organs, and fruit tissues and ontogenetic stages combined had a higher incidence of organ‐specific mass spectral features than leaves. Roots had ≤α diversity than leaves and the lowest β and γ diversity of all organs. Phylogenetic correlations of chemical distance varied by plant organ and chemical class.Our results describe patterns of specialized metabolite diversity across organs and species and provide support for organ‐specific contributions to plant chemodiversity. This study contributes to the growing understanding within plant evolutionary ecology of the biological scales of specialized metabolite diversification. Future studies combining our data on specialized metabolite diversity with biotic interaction data and experiments can test existing hypotheses on the roles of ecological interactions in the evolution of chemodiversity.  more » « less
Award ID(s):
1953934 2231761
PAR ID:
10640909
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Plant Biology
Volume:
27
Issue:
5
ISSN:
1435-8603
Page Range / eLocation ID:
681 to 697
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Premise The specialized metabolites of plants are recognized as key chemical traits in mediating the ecology and evolution of sundry plant–biotic interactions, from pollination to seed predation. Intra‐ and interspecific patterns of specialized metabolite diversity have been studied extensively in leaves, but the diverse biotic interactions that contribute to specialized metabolite diversity encompass all plant organs. Focusing on two species of Psychotria shrubs, we investigated and compared patterns of specialized metabolite diversity in leaves and fruit with respect to each organ's diversity of biotic interactions. Methods To evaluate associations between biotic interaction diversity and specialized metabolite diversity, we combined UPLC‐MS metabolomic analysis of foliar and fruit specialized metabolites with existing surveys of leaf‐ and fruit‐centered biotic interactions. We compared patterns of specialized metabolite richness and variance among vegetative and reproductive tissues, among plants, and between species. Results In our study system, leaves interact with a far larger number of consumer species than do fruit, while fruit‐centric interactions are more ecologically diverse in that they involve antagonistic and mutualistic consumers. This aspect of fruit‐centric interactions was reflected in specialized metabolite richness—leaves contained more than fruit, while each organ contained over 200 organ‐specific specialized metabolites. Within each species, leaf‐ and fruit‐specialized metabolite composition varied independently of one another across individual plants. Contrasts in specialized metabolite composition were stronger between organs than between species. Conclusions As ecologically disparate plant organs with organ‐specific specialized metabolite traits, leaves and fruit can each contribute to the tremendous overall diversity of plant specialized metabolites. 
    more » « less
  2. Interactions between plants and leaf herbivores have long been implicated as the major driver of plant secondary metabolite diversity. However, other plant-animal interactions, such as those between fruits and frugivores, may also be involved in phytochemical diversification. Using 12 species of Piper , we conducted untargeted metabolomics and molecular networking with extracts of fruits and leaves. We evaluated organ-specific secondary metabolite composition and compared multiple dimensions of phytochemical diversity across organs, including richness, structural complexity, and variability across samples at multiple scales within and across species. Plant organ identity, species identity, and the interaction between the two all significantly influenced secondary metabolite composition. Leaves and fruit shared a majority of compounds, but fruits contained more unique compounds and had higher total estimated chemical richness. While the relative levels of chemical richness and structural complexity across organs varied substantially across species, fruit diversity exceeded leaf diversity in more species than the reverse. Furthermore, the variance in chemical composition across samples was higher for fruits than leaves. By documenting a broad pattern of high phytochemical diversity in fruits relative to leaves, this study lays groundwork for incorporating fruit into a comprehensive and integrative understanding of the ecological and evolutionary factors shaping secondary metabolite composition at the whole-plant level. 
    more » « less
  3. Abstract Human impacts have led to dramatic biodiversity change which can be highly scale‐dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured.We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land‐use histories to never‐disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot‐scale (α‐scale, 0.5 m2) and site‐scale (γ‐scale, 10 m2), as well as the within‐site heterogeneity (β‐diversity) and among‐site variation in species composition (turnover and nestedness).At our α‐scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never‐ploughed sites. Within‐site β‐diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ‐scale. Richness in recovering sites was ~65% of that in remnant never‐ploughed sites. The presence of species characteristic of the never‐disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites.Synthesis.We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never‐ploughed sites at any scale. β‐diversity recovered more than α‐scale or γ‐scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time‐scales can inform targeted active restoration interventions and perhaps, lead to better outcomes. 
    more » « less
  4. Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  5. Summary The mechanisms that regulate the vast diversity of plant organ shapes such as the fruit remain to be fully elucidated. TONNEAU1 Recruiting Motif proteins (TRMs) have been implicated in the control of organ shapes in a number of plant species, including tomato. However, the role of many of them is unknown. TRMs interact with Ovate Family Proteins (OFPs) via the M8 domain. However, thein plantafunction of the TRM‐OFP interaction in regulating shape is unknown.We used CRISPR/Cas9 to generate knockout mutants in TRM proteins from different subclades and in‐frame mutants within the M8 domain to investigate their roles in organ shape and interactions with OFPs.Our findings indicate that TRMs impact organ shape along both the mediolateral and proximo‐distal axes of growth. Mutations inSltrm3/4andSltrm5act additively to rescue the elongated fruit phenotype ofovate/Slofp20(o/s) to a round shape. Contrary, mutations inSltrm19andSltrm17/20aresult in fruit elongation and further enhance the obovoid phenotype in theo/smutant.This study supports a combinatorial role of the TRM‐OFP regulon where OFPs and TRMs expressed throughout development have both redundant and opposing roles in regulating organ shape. 
    more » « less