Magnons are quasiparticles of spin waves, carrying both thermal energy and spin information. Controlling magnon transport processes is critical for developing innovative magnonic devices used in data processing and thermal management applications in microelectronics. The spin ladder compound Sr14Cu24O41 with large magnon thermal conductivity offers a valuable platform for investigating magnon transport. However, there are limited studies on enhancing its magnon thermal conductivity. Herein, we report the modification of magnon thermal transport through partial substitution of strontium with yttrium (Y) in both polycrystalline and single crystalline Sr14−xYxCu24O41. At room temperature, the lightly Y-doped polycrystalline sample exhibits 430% enhancement in thermal conductivity compared to the undoped sample. This large enhancement can be attributed to reduced magnon-hole scattering, as confirmed by the Seebeck coefficient measurement. Further increasing the doping level results in negligible change and eventually suppression of magnon thermal transport due to increased magnon-defect and magnon-hole scattering. By minimizing defect and boundary scattering, the single crystal sample with x = 2 demonstrates a further enhanced room-temperature magnon thermal conductivity of 19Wm−1K−1, which is more than ten times larger than that of the undoped polycrystalline material. This study reveals the interplay between magnon-hole scattering and magnon-defect scattering in modifying magnon thermal transport, providing valuable insights into the control of magnon transport properties in magnetic materials. 
                        more » 
                        « less   
                    
                            
                            Achieving Large and Anisotropic Spin‐Mediated Thermal Transport in Textured Quantum Magnets
                        
                    
    
            Abstract Spin excitations, including magnons and spinons, can carry thermal energy and spin information. Studying spin‐mediated thermal transport is crucial for spin caloritronics, enabling efficient heat dissipation in microelectronics and advanced thermoelectric applications. However, designing quantum materials with controllable spin transport is challenging. Here, highly textured spin‐chain compound Ca2CuO3is synthesized using a solvent‐cast cold pressing technique, aligning 2D nanostructures with spin chains perpendicular to the pressing direction. The sample exhibits high thermal conductivity anisotropy and an excellent room‐temperature thermal conductivity of 12 ± 0.7 W m−1K−1, surpassing all polycrystalline quantum magnets. Such a high value is attributed to the significant spin‐mediated thermal conductivity of 10 ± 1 W m−1K−1, the highest reported among all polycrystalline quantum materials. Analysis through a 1D kinetic model suggests that near room‐temperature, spinon thermal transport is dominated by coupling with high‐frequency phonons, while extrinsic spinon‐defect scattering is negligible. Additionally, this method is used to prepare textured La2CuO4, exhibiting highly anisotropic magnon thermal transport and demonstrating its broad applicability. A distinct role of defect scattering in spin‐mediated thermal transport is observed in two spin systems. These findings open new avenues for designing quantum materials with controlled spin transport for thermal management and energy conversion. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2144328
- PAR ID:
- 10641131
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 35
- Issue:
- 12
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Temperature‐dependent thermal properties of phase‐pure polycrystalline ternary chalcogenides Cu4Bi4S9and Cu4Bi4Se9are reported. The structure and bonding in these materials result in very low thermal conductivity values (<0.8 W m−1 K−1at room temperature) for both materials. The lattice contribution, Debye temperatures, and Sommerfeld coefficient are obtained from low‐temperature heat capacity data that also indicate very small electronic contributions to the heat capacity for these materials. This study aids in the identification of new nontoxic, earth‐abundant resistive ternary chalcogenide materials with low thermal conductivity for potential thermal barrier coating and rewriteable storage applications.more » « less
- 
            To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling.more » « less
- 
            Engineering the thermal properties in solids is important for both fundamental physics ( e.g. electric and phonon transport) and device applications ( e.g. thermal insulating coating, thermoelectrics). In this paper, we report low thermal transport properties of four selenide compounds (BaAg 2 SnSe 4 , BaCu 2 GeSe 4 , BaCu 2 SnSe 4 and SrCu 2 GeSe 4 ) with experimentally-measured thermal conductivity as low as 0.31 ± 0.03 W m −1 K −1 at 673 K for BaAg 2 SnSe 4 . Density functional theory calculations predict κ < 0.3 W m −1 K −1 for BaAg 2 SnSe 4 due to scattering from weakly-bonded Ag–Ag dimers. Defect calculations suggest that achieving high hole doping levels in these materials could be challenging due to monovalent ( e.g. , Ag) interstitials acting as hole killers, resulting in overall low electrical conductivity in these compounds.more » « less
- 
            The performances of porous graphitic foams in flexible electronic, electrochemical, and thermal management devices can be enhanced by increasing the interfacial charge or heat transport between the 3D graphitic network and the functional materials filled into the pore space. Herein, an investigation of the effects of chemical vapor deposition (CVD) conditions on the structure and thermal conductivities of both graphitic foams grown from reticular Ni foams and dendritic graphitic foams (DGFs) synthesized from electrodeposited dendritic Ni foams is reported. A room‐temperature solid thermal conductivity () up to 800 W m−1 K−1is obtained from the graphitic foams (GF) with less than 1% volume fraction. In comparison, the DGFs, which provide a large increase of the specific surface area for enhanced interfacial heat transfer, achieve an effective thermal conductivity of 2.5 ± 0.2 W m−1 K−1because of an enhanced volume fraction to about 5% despite a compromised around 200 W m−1 K−1due to the increased defect density. Through systematical variations of the catalyst template morphology and CVD conditions, this work reveals the distinct roles of catalyst surface curvature and graphitic strut thickness in controlling the properties of GFs and DGFs for thermal management.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
