The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for “hot” superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24and H30hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculatedTcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30as well as H24cages in the structure. Our predicted introduction of Sc in the La–H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides.
more »
« less
This content will become publicly available on November 18, 2025
Unlocking the Origin of High‐Temperature Superconductivity in Molecular Hydrides at Moderate Pressures
Abstract The current pressing challenge in the field of superconducting hydride research is to lower the stable pressure of such materials for practical applications. Molecular hydrides are usually stable under moderate pressure, but the underlying metallization mechanism remains elusive. Here, the important role of chemical interactions in governing the structures and properties of molecular hydrides is demonstrated. A new mechanism is proposed for obtaining high‐temperature and even room‐temperature superconductivity in molecular hydrides and report that the ternary hydride NaKH12hostsTcvalues up to 245 K at moderate pressure of 60 GPa. Both the excellent stability and superconductivity of NaKH12originate from the fact that the localized electrons in the interstitial region of the metal lattice occupying the crystal orbitals well matched with the hydrogen lattice and forming chemical templates to assist the assembly of H2units. These localized electrons weaken the H─H covalent bonds and improve the charge connectivity between the H2units, ensuring the strong coupling between electrons and hydrogen‐dominated optical phonons. The theory provides a key perspective for understanding the superconductivity of molecular hydrides with various structural motifs, opening the door to obtaining high‐temperature superconductors from molecular hydrides at moderate pressures.
more »
« less
- Award ID(s):
- 1848141
- PAR ID:
- 10641261
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 35
- Issue:
- 8
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Superconductivity and Pronounced Electron‐Phonon Coupling in Rock‐Salt Al 1−x O 1−x and Ti 1−x O 1−xAbstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure.more » « less
-
Abstract Studies of molecular mixtures containing hydrogen sulfide (H 2 S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H 2 S and ammonia (NH 3 ) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H 2 S–NH 3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H 2 S) (NH 3 ) and (H 2 S) (NH 3 ) 4 , are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H 2 S) (NH 3 ) 4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron–phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H 2 S) (NH 3 ) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation.more » « less
-
Abstract Recently, room temperature superconductivity was measured in a carbonaceous sulfur hydride material whose identity remains unknown. Herein, first-principles calculations are performed to provide a chemical basis for structural candidates derived by doping H3S with low levels of carbon. Pressure stabilizes unusual bonding configurations about the carbon atoms, which can be six-fold coordinated as CH6entities within the cubic H3S framework, or four-fold coordinated as methane intercalated into the H-S lattice, with or without an additional hydrogen in the framework. The doping breaks degenerate bands, lowering the density of states at the Fermi level (NF), and localizing electrons in C-H bonds. Low levels of CH4doping do not increaseNFto values as high as those calculated for$$Im\bar{3}m$$ -H3S, but they can yield a larger logarithmic average phonon frequency, and an electron–phonon coupling parameter comparable to that ofR3m-H3S. The implications of carbon doping on the superconducting properties are discussed.more » « less
-
Abstract Tetrahydrides crystallizing in the ThCr2Si2structure type have been predicted to become stable for a plethora of metals under pressure, and some have recently been synthesized. Through detailed first‐principles investigations we show that the metal atoms within thesesymmetry MH4compounds may be divalent, trivalent or tetravalent. The valence of the metal atom and its radius govern the bonding and electronic structure of these phases, and their evolution under pressure. The factors important for enhancing superconductivity include a large number of hydrogenic states at the Fermi level, and the presence of quasi‐molecular Hunits whose bonds have been stretched and weakened (but not broken) via electron transfer from the electropositive metal, and via a Kubas‐like interaction with the metal. Analysis of the microscopic mechanism of superconductivity in MgH4, ScH4and ZrH4reveals that phonon modes involving a coupled libration and stretch of the Hunits leading to the formation of more complex hydrogenic motifs are important contributors towards the electron phonon coupling mechanism. In the divalent hydride MgH4, modes associated with motions of the hydridic hydrogen atoms are also key contributors, and soften substantially at lower pressures.more » « less
An official website of the United States government
