skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multiscale simulation of plastic transformations: The case of base‐assisted dehydrochlorination of polyvinyl chloride
Abstract Plastic transformations are critical to ongoing recycling and upcycling efforts, but the complexity of the reactions makes it difficult to understand the effect of individual factors on reaction rates and product distributions experimentally. In this work, we report on a multiscale simulation framework for studying polymer transformations that incorporates affordable high‐level coupled cluster calculations combined with benchmarked density functional theory calculations, detailed conformer search, and lattice‐based kinetic Monte Carlo simulations to provide the temporal and spatial evolution of the polymer during transformations. Our framework can match experimentally observed reaction times within an order of magnitudewithoutany parameter estimation in base‐assisted dehydrochlorination of polyvinyl chloride. We determine that the E2 reaction mechanism dominates the reaction and demonstrate that different structural defects can inhibit or promote directional polyene growth as well as affect the structure of the dehydrochlorination product.  more » « less
Award ID(s):
2029387 2132133 2339481
PAR ID:
10641502
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
70
Issue:
12
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We considertoric dynamical systems, which are also calledcomplex-balanced mass-action systems. These are remarkably stable polynomial dynamical systems that arise from the analysis of mathematical models of reaction networks when, under the assumption of mass-action kinetics, they can give rise tocomplex-balanced equilibria. Given a reaction network, we study theset of parameter valuesfor which the network gives rise to toric dynamical systems, also calledthe toric locusof the network. The toric locus is an algebraic variety, and we are especially interested in its topological properties. We show that complex-balanced equilibriadepend continuouslyon the parameter values in the toric locus, and, using this result, we prove that the toric locus has a remarkableproduct structure: it is homeomorphic to the product of the set of complex-balanced flux vectors and the affine invariant polyhedron of the network. In particular, it follows that the toric locus is acontractible manifold. Finally, we show that the toric locus is invariant with respect to bijective affine transformations of the generating reaction network. 
    more » « less
  2. Recent theoretical studies have explored how ultra-strong light–matter coupling can be used as a handle to control chemical transformations. Ab initio cavity quantum electrodynamics calculations demonstrate that large changes to reaction energies or barrier heights can be realized by coupling electronic degrees of freedom to vacuum fluctuations associated with an optical cavity mode, provided that large enough coupling strengths can be achieved. In many cases, the cavity effects display a pronounced orientational dependence. Here, we highlight the critical role that geometry relaxation can play in such studies. As an example, we consider a recent work [Pavošević et al., Nat. Commun. 14, 2766 (2023)] that explored the influence of an optical cavity on Diels–Alder cycloaddition reactions and reported large changes to reaction enthalpies and barrier heights, as well as the observation that changes in orientation can inhibit the reaction or select for one reaction product or another. Those calculations used fixed molecular geometries optimized in the absence of the cavity and fixed relative orientations of the molecules and the cavity mode polarization axis. Here, we show that when given a chance to relax in the presence of the cavity, the molecular species reorient in a way that eliminates the orientational dependence. Moreover, in this case, we find that qualitatively different conclusions regarding the impact of the cavity on the thermodynamics of the reaction can be drawn from calculations that consider relaxed vs unrelaxed molecular structures. 
    more » « less
  3. Abstract The evergrowing plastic production and the caused concerns of plastic waste accumulation have stimulated the need for waste plastic chemical recycling/valorization. Current methods suffer from harsh reaction conditions and long reaction time. Herein we demonstrate a non-thermal plasma-assisted method for rapid hydrogenolysis of polystyrene (PS) at ambient temperature and atmospheric pressure, generating high yield (>40 wt%) of C1–C3hydrocarbons and ethylene being the dominant gas product (Selectivity of ethylene,SC2H4 > 70%) within ~10 min. The fast reaction kinetics is attributed to highly active hydrogen plasma, which can effectively break bonds in polymer and initiate hydrogenolysis under mild condition. Efficient hydrogenolysis of post-consumer PS materials using this method is also demonstrated, suggesting a promising approach for fast retrieval of small molecular hydrocarbon modules from plastic materials as well as a good capability to process waste plastics in complicated conditions. 
    more » « less
  4. Abstract A process to achieve 1,2‐metalate rearrangements of indole boronate as a way to access substituted indolines in high diastereoselectivities is presented. The reaction involves the generation of a Cu–allenylidene, which is sufficiently electrophilic to induce the 1,2‐metalate rearrangement. The scope of the reaction is evaluated as well as further transformations of the product. 
    more » « less
  5. Abstract Numerous hydride‐abstracting agents generate the same cationic intermediate, but substrate features such as intermediate cation stability, oxidation potential, and steric environment can influence reaction rates in an oxidant‐dependent manner. This manuscript provides experimental data to illustrate the role that structural features play in the kinetics of hydride abstraction reactions with commonly used quinone‐, oxoammonium ion‐, and carbocation‐ based oxidants. Computational studies of the transition state structures and energies explain these results and energy decomposition analysis calculations reveal unique sensitivities to electrostatic attraction and steric repulsions. Rigorous rate studies of select reactions validated the capacity of the calculations to predict reactivity trends. Additionally, kinetics studies demonstrate the potential for product inhibition in DDQ‐mediated reactions. These studies provide a clear guide to select the optimal oxidant for structurally disparate substrates and lead to predictions of reactivity that were validated experimentally. 
    more » « less