Abstract Organic materials with redox‐active oxygen functional groups are of great interest as electrode materials for alkali‐ion storage due to their earth‐abundant constituents, structural tunability, and enhanced energy storage properties. Herein, a hybrid carbon framework consisting of reduced graphene oxide and oxygen functionalized carbon quantum dots (CQDs) is developed via the one‐pot solvothermal reduction method, and a systematic study is undertaken to investigate its redox mechanism and electrochemical properties with Li‐, Na‐, and K‐ions. Due to the incorporation of CQDs, the hybrid cathode delivers consistent improvements in charge storage performance for the alkali‐ions and impressive reversible capacity (257 mAh g−1at 50 mA g−1), rate capability (111 mAh g−1at 1 A g−1), and cycling stability (79% retention after 10 000 cycles) with Li‐ion. Furthermore, density functional theory calculations uncover the CQD structure‐electrochemical reactivity trends for different alkali‐ion. The results provide important insights into adopting CQD species for optimal alkali‐ion storage.
more »
« less
High‐Rate Polymeric Redox in MXene‐Based Superlattice‐Like Heterostructure for Ammonium Ion Storage
Abstract Achieving both high redox activity and rapid ion transport is a critical and pervasive challenge in electrochemical energy storage applications. This challenge is significantly magnified when using large‐sized charge carriers, such as the sustainable ammonium ion (NH4+). A self‐assembled MXene/n‐type conjugated polyelectrolyte (CPE) superlattice‐like heterostructure that enables redox‐active, fast, and reversible ammonium storage is reported. The superlattice‐like structure persists as the CPE:MXene ratio increases, accompanied by a linear increase in the interlayer spacing of MXene flakes and a greater overlap of CPEs. Concurrently, the redox activity per unit of CPE unexpectedly intensifies, a phenomenon that can be explained by the enhanced de‐solvation of ammonium due to the increased volume of 3 Å‐sized pores, as indicated by molecular dynamic simulations. At the maximum CPE mass loading (MXene:CPE ratio = 2:1), the heterostructure demonstrates the strongest polymeric redox activity with a high ammonium storage capacity of 126.1 C g−1and a superior rate capability at 10 A g−1. This work unveils an effective strategy for designing tunable superlattice‐like heterostructures to enhance redox activity and achieve rapid charge transfer for ions beyond lithium.
more »
« less
- Award ID(s):
- 2318105
- PAR ID:
- 10641531
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 14
- Issue:
- 42
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Lithium‐ion and sodium‐ion batteries (LIBs and SIBs) are crucial in our shift toward sustainable technologies. In this work, the potential of layered boride materials (MoAlB and Mo2AlB2) as novel, high‐performance electrode materials for LIBs and SIBs, is explored. It is discovered that Mo2AlB2shows a higher specific capacity than MoAlB when used as an electrode material for LIBs, with a specific capacity of 593 mAh g−1achieved after 500 cycles at 200 mA g−1. It is also found that surface redox reactions are responsible for Li storage in Mo2AlB2, instead of intercalation or conversion. Moreover, the sodium hydroxide treatment of MoAlB leads to a porous morphology and higher specific capacities exceeding that of pristine MoAlB. When tested in SIBs, Mo2AlB2exhibits a specific capacity of 150 mAh g−1at 20 mA g−1. These findings suggest that layered borides have potential as electrode materials for both LIBs and SIBs, and highlight the importance of surface redox reactions in Li storage mechanisms.more » « less
-
Abstract MXenes are among the fastest‐growing families of 2D materials, promising for high‐rate, high‐energy energy storage applications due to their high electronic and ionic conductivity, large surface area, and reversible surface redox ability. The Ti3C2TxMXene shows a capacitive charge storage mechanism in diluted aqueous LiCl electrolyte while achieving abnormal redox‐like features in the water‐in‐salt LiCl electrolyte. Herein, variousoperandotechniques are used to investigate changes in resistance, mass, and electrode thickness of Ti3C2Txduring cycling in salt‐in‐water and water‐in‐salt LiCl electrolytes. Significant resistance variations due to interlayer space changes are recorded in the water‐in‐salt LiCl electrolyte. In both electrolytes, conductivity variations attributed to charge carrier density changes or varied inter‐sheet electron hopping barriers are detected in the capacitive areas, where no thickness variations are observed. Overall, combining thoseoperandotechniques enhances the understanding of charge storage mechanisms and facilitates the development of MXene‐based energy storage devices.more » « less
-
Metallic sulfide anodes show great promise for sodium‐ion batteries due to their high theoretic capacities. However, their practical application is greatly hampered by poor electrochemical performance because of the large volume expansion of the sulfides and the sluggish kinetics of the Na+ions. Herein, a porous bimetallic sulfide of the SnS/Sb2S3heterostructure is constructed that is encapsulated in the sulfur and nitrogen codoped carbon matrix (SnS/Sb2S3@SNC) by a facile and scalable method. The porous structure can provide void space to alleviate the volume expansion upon cycling, guaranteeing excellent structural stability. The unique heterostructure and the S, N codoped carbon matrix together facilitate fast‐charge transport to improve reaction kinetics. Benefitting from these merits, the SnS/Sb2S3@SNC electrode exhibits high capacities of 425 mA h g−1at 200 mA g−1after 100 cycles, and 302 mA h g−1at 500 mA g−1after 400 cycles. Moreover, the SnS/Sb2S3@SNC anode shows an outstanding rate performance with a capacity of over 200 mA h g−1at a high current density of 5000 mA g−1. This study provides a new strategy and insight into the design of electrode materials with the potential for the practical realization and applications of next‐generation batteries.more » « less
-
Abstract Aqueous organic redox flow batteries (AORFBs) are highly attractive for large‐scale energy storage because of their nonflammability, low cost, and sustainability. (2,2,6,6‐Tetramethylpiperidin‐1‐yl)oxyl (TEMPO) derivatives, a class of redox active molecules bearing air‐stable free nitroxyl radicals and high redox potential (>0.8 V vs NHE), has been identified as promising catholytes for AORFBs. However, reported TEMPO based molecules are either permeable through ion exchange membranes or not chemically stable enough for long‐term energy storage. Herein, a new TEMPO derivative functionalized with a dual‐ammonium dicationic group,N1, N1, N1, N3, N3, 2, 2, 6, 6‐nonamethyl‐N3‐(piperidinyloxy)propane‐1,3‐bis(ammonium) dichloride (N2‐TEMPO) as a stable, low permeable catholyte for AORFBs is reported. Ultraviolet–visible (UV–vis) and proton nuclear magnetic resonance (1H‐NMR) spectroscopic studies reveal its exceptional stability and ultra‐low permeability (1.49 × 10−12 cm2 s−1). Coupled with 1,1′‐bis[3‐(trimethylammonio)propyl]‐4,4′‐bipyridinium tetrachloride ((NPr)2V) as an anolyte, a 1.35 VN2‐TEMPO/(NPr)2V AORFB with 0.5 melectrolytes (9.05 Wh L−1) delivers a high power density of 114 mW cm−2and 100% capacity retention for 400 cycles at 60 mA cm−2. At 1.0 melectrolyte concentrations, theN2‐TEMPO/(NPr)2V AORFB achieves an energy density of 18.1 Wh L−1and capacity retention of 90% for 400 cycles at 60 mA cm−2.more » « less
An official website of the United States government
