skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 23, 2026

Title: Innate Immune‐Cloaked Microgel‐Coated Mesenchymal Stromal Cells Reverse Persistent Pulmonary Fibrosis via Reparative Macrophages
Abstract The innate immune system plays a dual role in both mediating pathogenic processes following tissue damage and acting as a barrier to effective therapeutic delivery. Strategies that evade immune clearance while modulating host immune components offer promising solutions for treating complex chronic diseases, such as fibrosis. Here, an innate immune checkpoint material‐based strategy is presented in which mesenchymal stromal cells, coated with a soft conformal microgel and functionalized with the CD47 self‐marker agonist, effectively evade clearance by tissue resident macrophages. These engineered cells reverse persistent fibrotic damage in the lungs through a paracrine mechanism. Single‐cell RNA sequencing identifies a transitional antigen‐presenting macrophage subpopulation that mediates these reparative effects. By combining immune cloaking with the presentation of local signals encoded in the gel coatings, this strategy can be used to design secretory cells for long‐term tissue remodeling, enabling a living pharmacy for chronic tissue damage.  more » « less
Award ID(s):
2143857
PAR ID:
10642001
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hepatitis C Virus NS3/NS4A, a serine protease complex, has been found to interact with many host proteins and cause various adverse effects on cellular function and immune response. For example, the cleavage of important immune factors by NS3/NS4A has been suggested as a mechanism for the hepatitis C virus to evade innate immunity. The spectrum of susceptible substrates for NS3/NS4A cleavage certainly includes important immune modulator kinases such as IKKα, IKKβ, IKKε, and TBK1, as demonstrated in this paper. We show that the kinase activities of these four host kinases were transformed in unexpected ways by NS3/NS4A. Treatment with NS3/NS4A caused a significant reduction in the kinase activities of both IKKα and IKKβ, suggesting that HCV might use its NS3/NS4A protease activity to deactivate the NF-κB-associated innate immune responses. In contrast, the kinase activities of both IKKε and TBK1 were enhanced after NS3/NS4A treatment, and more strikingly, the enhancement was more than 10-fold within 20 min of treatment. Our mass spectroscopic results suggested that the cleavage after Cys89 in the kinase domain of IKKε by NS3/NS4A led to their higher kinase activities, and three potential mechanisms were discussed. The observed kinase activity enhancement might facilitate the activation of both IKKε- and TBK1-dependent cellular antiviral pathways, likely contributing to spontaneous clearance of the virus and observed acute HCV infection. After longer than 20 min cleavage, both IKKε- and TBK1 gradually lost their kinase activities and the relevant antiviral pathways were expected to be inactivated, facilitating the establishment of chronic HCV infection. 
    more » « less
  2. Abstract Pseudomonas aeruginosais a pathogen that forms robust biofilms which are commonly associated with chronic infections and cannot be successfully cleared by the immune system. Neutrophils, the most common white blood cells, target infections with pathogen‐killing mechanisms that are rendered largely ineffective by the protective physicochemical structure of a biofilm. Visualisation of the complex interactions between immune cells and biofilms will advance understanding of how biofilms evade the immune system and could aid in developing treatment methods that promote immune clearance with minimal harm to the host. Scanning electron microscopy (SEM) distinguishes itself as a powerful, high‐resolution tool for obtaining strikingly clear and detailed topographical images. However, taking full advantage of SEM's potential for high‐resolution imaging requires that the fixation process simultaneously preserve both intricate biofilm architecture and the morphologies and structural signatures characterising neutrophils responses at an infection site. Standard aldehyde‐based fixation techniques result in significant loss of biofilm matrix material and morphologies of responding immune cells, thereby obscuring the details of immune interactions with the biofilm matrix. Here we show an improved fixation technique using the cationic dye alcian blue to preserve and visualise neutrophil interactions with the three‐dimensional architecture ofP. aeruginosabiofilms. We also demonstrate that this technique better preserves structures of biofilms grown from two other bacterial species,Klebsiella pneumoniaeandBurkholderia thailandensis. 
    more » « less
  3. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in varied clinical outcomes, with virus-induced chronic inflammation and tissue injury being associated with enhanced disease pathogenesis. To determine the role of tissue damage on immune populations recruitment and function, a mathematical model of innate immunity following SARS-CoV-2 infection has been proposed. The model was fitted to published longitudinal immune marker data from patients with mild and severe COVID-19 disease and key parameters were estimated for each clinical outcome. Analytical, bifurcation, and numerical investigations were conducted to determine the effect of parameters and initial conditions on long-term dynamics. The results were used to suggest changes needed to achieve immune resolution. 
    more » « less
  4. Galectins are a family of ß-galactoside-binding lectins characterized by a unique sequence motif in the carbohydrate recognition domain, and evolutionary and structural conservation from fungi to invertebrates and vertebrates, including mammals. Their biological roles, initially understood as limited to recognition of endogenous (“self”) carbohydrate ligands in embryogenesis and early development, dramatically expanded in later years by the discovery of their roles in tissue repair, cancer, adipogenesis, and regulation of immune homeostasis. In recent years, however, evidence has also accumulated to support the notion that galectins can bind (“non-self”) glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Thus, this evidence has established a newparadigm by which galectins can function not only as pattern recognition receptors but also as effector factors, by binding to the microbial surface and inhibiting adhesion and/or entry into the host cell, directly killing the potential pathogen by disrupting its surface structures, or by promoting phagocytosis, encapsulation, autophagy, and pathogen clearance from circulation. Strikingly, some viruses, bacteria, and protistan parasites take advantage of the aforementioned recognition roles of the vector/host galectins, for successful attachment and invasion. These recent findings suggest that galectin-mediated innate immune recognition and effector mechanisms, which throughout evolution have remained effective for preventing or fighting viral, bacterial, and parasitic infection, have been “subverted” by certain pathogens by unique evolutionary adaptations of their surface glycome to gain host entry, and the acquisition of effective mechanisms to evade the host’s immune responses. 
    more » « less
  5. Abstract Objective.The recording instability of neural implants due to neuroinflammation at the device-tissue interface is a primary roadblock to broad adoption of brain-machine interfaces. While a multiphasic immune response, marked by glial scaring, oxidative stress (OS), and neurodegeneration, is well-characterized, the independent contributions of systemic and local ‘innate’ immune responses are not well-understood. We aimed to understand and mitigate the isolated the innate neuroinflammatory response to devices.Approach.Three-dimensional primary neural cultures provide a unique environment for studying the drivers of neuroinflammation by decoupling the innate and systemic immune systems, while conserving an endogenous extracellular matrix and structural and functional network complexity. We created a three-dimensionalin vitromodel of the device-tissue interface by seeding primary cortical cells around microwires. Live imaging of both dye and Adeno-Associated Virus (AAV) - mediated functional, structural, and lipid peroxidation fluorescence was employed to characterize the neuroinflammatory response.Main results.Live imaging of microtissues over time revealed independent innate neuroinflammation, marked by increased OS, decreased neuronal density, and increased functional connectivity. We demonstrated the use of this model for therapeutic screening by directly applying drugs to neural tissue, bypassing low bioavailability through thein vivoblood brain barrier. As there is growing interest in long-acting antioxidant therapies, we tested efficacy of ‘perpetual’ antioxidant ceria nanoparticles, which reduced OS, increased neuronal density, and protected functional connectivity.Significance.Our three-dimensionalin vitromodel of the device-tissue interface exhibited symptoms of OS-mediated innate neuroinflammation, indicating a significant local immune response to devices. The dysregulation of functional connectivity of microcircuits surround implants suggests the presence of an observer effect, in which the process of recording neural activity may fundamentally change the neural signal. Finally, the demonstration of antioxidant ceria nanoparticle treatment exhibited substantial promise as a neuroprotective and anti-inflammatory treatment strategy. 
    more » « less