skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photochemistry with Plane‐Polarized Light: Controlling Selectivity of a Photochemical Rearrangement
Abstract Over the past 50 years, a principal approach to controlling conventional photochemical reactions has relied on imposing geometric constraints on reactant or transition state via conducting photochemistry in the organized or constraining media. Herein, we describe a fundamentally different approach to affect the course of photochemical reactions (photochemical rearrangements) by utilizing spatially selective excitation of specific electronic transitions with plane‐polarized light in the reactant molecules uniformly aligned in the nematic liquid crystal phase. In particular, we focused on the Type B enone rearrangement of 4,4‐diarylcyclohexenones – one of the most common photochemical rearrangements. We demonstrated that the aryl migratory aptitude in this reaction was attenuated in response to changing an angle between the polarization plane of the incident light and the alignment direction of the nematic liquid crystal, with the enhanced aryl migration achieved when the polarization plane coincided with the transition dipole moment leading to the excited state responsible for this migration. The spatially‐selective initial excitation therefore was overruling the electronic factors responsible for the relative ratio of the two alternative photoproducts. The experimental findings were further supported by the results of a computational study. This work showcases a new fundamental paradigm in controlling photochemical reactivity and selectivity of photoreactions.  more » « less
Award ID(s):
2155026 2117776
PAR ID:
10642325
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
30
Issue:
72
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated. 
    more » « less
  2. Abstract Ferroelastic BiVO4has charged surface domains, even though its crystal structure is non‐polar. These charged domains can be detected by piezo‐force microscopy and lead to spatially selective photochemical reactions. The photochemical reactivity of (Bi0.96Na0.04)(V0.92Mo0.08)O4is studied above and below the ferroelastic transition temperature to better understand the origin of charged ferroelastic domains. The results demonstrate that spatially selective reactivity occurs above the ferroelastic transition temperature, similar to what is observed below the transition temperature. Furthermore, when the sample is cooled after brief excursions above the transition temperature, the domains reform with a microstructure that is indistinguishable from what is observed before the transition. The results are consistent with the idea that inhomogeneous distributions of charged point defects, created by stress in the ferroelastic domains, lead to charged domains that promote spatially selective photochemical reactions. If these inhomogeneous defect distributions are not homogenized above the transition temperature, they can template the re‐creation of the original domain microstructure after the transformation back to the ferroelastic phase. 
    more » « less
  3. null (Ed.)
    We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic F e S e 1 − x S x superconductor. We observe two types of long-wavelength X Y symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at T S ( x ) , a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the X Y symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward T S ( x ) . The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration x c r ≈ 0.16 , while the pseudogap size decreases with the suppression of T S ( x ) . We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed. 
    more » « less
  4. The isotropic to ferroelectric nematic liquid transition was theoretically studied over one hundred years ago, but its experimental studies are rare. Here we present experimental results and theoretical considerations of novel electromechanical effects of ferroelectric nematic liquid crystal droplets coexisting with the isotropic melt. We find that the droplets have flat pancake-like shapes that are thinner than the sample thickness as long as there is room to increase the lateral droplet size. In the center of the droplets a wing-shaped defect with low birefringence is present that moves perpendicular to a weak in-plane electric field, and then extends and splits in two at higher fields. Parallel to the defect motion and extension, the entire droplet drifts along the electric field with a speed that is independent of the size of the droplet and is proportional to the amplitude of the electric field. After the field is increased above 1 mV μm −1 the entire droplet gets deformed and oscillates with the field. These observations led us to determine the polarization field and revealed the presence of a pair of positive and negative bound electric charges due to divergences of polarization around the defect volume. 
    more » « less
  5. Disclination lines play a key role in many physical processes, from the fracture of materials to the formation of the early universe. Achieving versatile control over disclinations is key to developing novel electro-optical devices, programmable origami, directed colloidal assembly, and controlling active matter. Here, we introduce a theoretical framework to tailor three-dimensional disclination architecture in nematic liquid crystals experimentally. We produce quantitative predictions for the connectivity and shape of disclination lines found in nematics confined between two thinly spaced glass substrates with strong patterned planar anchoring. By drawing an analogy between nematic liquid crystals and magnetostatics, we find that i) disclination lines connect defects with the same topological charge on opposite surfaces and ii) disclination lines are attracted to regions of the highest twist. Using polarized light to pattern the in-plane alignment of liquid crystal molecules, we test these predictions experimentally and identify critical parameters that tune the disclination lines’ curvature. We verify our predictions with computer simulations and find nondimensional parameters enabling us to match experiments and simulations at different length scales. Our work provides a powerful method to understand and practically control defect lines in nematic liquid crystals. 
    more » « less