Abstract Main‐group element‐mediated C−H activation remains experimentally challenging and the development of clear concepts and design principles has been limited by the increased reactivity of relevant complexes, especially for the heavier elements. Herein, we report that the stibenium ion [(pyCDC)Sb][NTf2]3(1) (pyCDC=bis‐pyridyl carbodicarbene; NTf2=bis(trifluoromethanesulfonyl)imide) reacts with acetonitrile in the presence of the base 2,6‐di‐tert‐butylpyridine to enable C(sp3)−H bond breaking to generate the stiba‐methylene nitrile complex [(pyCDC)Sb(CH2CN)][NTf2]2(2). Kinetic analyses were performed to elucidate the rate dependence for all the substrates involved in the reaction. Computational studies suggest that C−H activation proceeds via a mechanism in which acetonitrile first coordinates to the Sb center through the nitrogen atom in a κ1fashion, thereby weakening the C−H bond which can then be deprotonated by base in solution. Further, we show that1reacts with terminal alkynes in the presence of 2,6‐di‐tert‐butylpyridine to enable C(sp)−H bond breaking to form stiba‐alkynyl adducts of the type [(pyCDC)Sb(CCR)][NTf2]2(3 a–f). Compound1shows excellent specificity for the activation of the terminal C(sp)−H bond even across alkynes with diverse functionality. The resulting stiba‐methylene nitrile and stiba‐alkynyl adducts react with elemental iodine (I2) to produce iodoacetonitrile and iodoalkynes, while regenerating an Sb trication.
more »
« less
Cascade Reactions of Alkynyl Ketones and Amides to Generate Unsaturated Oxacycles and Aromatic Carbocycles
Abstract We describe novel amine‐mediated transformation of alkynyl ketones and amides to generate 2‐methylene‐2H‐pyrans, substituted 3‐hydroxy‐9H‐fluoren‐9‐ones, and amine‐incorporated arenes. These cascade processes are initiated by conjugate addition of secondary amine followed by hydrolysis of the enamine/vinylogous amide intermediates. The product distribution is highly sensitive to the steric and electronic effects of the substituents on both the alkyne moieties, the tether structure connecting them, and the nature of the amine. Alkynyl amide participates in the Alder‐ene reaction favorably to generate more reactive allene amide that reacts with amine to generate amine‐incorporated arene products. These metal‐free cascade reactions are a useful synthetic method that can be exploited for the construction of various hetero‐ and carbocyclic systems.
more »
« less
- Award ID(s):
- 2055055
- PAR ID:
- 10642350
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 65
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We demonstrate that 2‐alkenylarylaldimines and ketimines undergo thermal 6π‐azaelectrocyclization to generate a wide range of azabicyclico‐quinodimethanes (o‐QDMs). Theseo‐QDMs exist as a hybrid of a diene and a benzylic diradical. The diradical nature was confirmed by their ability to undergo dimerization and react with H‐atom donor, 2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) and O2. In addition, the interception of the diradicaloido‐QDMs by H‐atom transfer was used to synthesize five tetrahydroisoquinoline alkaloids and related bioactive molecules. The diene form can undergo [4+2] cycloaddition reactions with different dienophiles to generate bridged azabicycles in high endo:exo selectivity. The azabicyclico‐QDMs can be generated for [4+2] cycloaddition from a wide range of electronically and sterically varied 2‐alkenylarylimines, including mono, di, tri and tetrasubstituted alkenes, and imines derived from arylamine, alkylamine (1°, 2°, 3°), benzylamine, benzylsulfonamide andBoc‐amine.more » « less
-
Abstract A series of molecular Mn catalysts featuring aniline groups in the second‐coordination sphere has been developed for electrochemical and photochemical CO2reduction. The arylamine moieties were installed at the 6 position of 2,2’‐bipyridine (bpy) to generate a family of isomers in which the primary amine is located at theortho‐(1‐Mn),meta‐(2‐Mn), orpara‐site (3‐Mn) of the aniline ring. The proximity of the second‐sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst1‐Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9‐fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3Br (901 vs. 102 s−1, respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration‐dependent shift in product selectivity from CO (at high [catalyst]) to HCO2H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products.more » « less
-
Abstract A pair of novel Fe‐alkynyl complexes, [FeIII(HMTI)(C2SiEt3)2]ClO4(2) and [FeII(HMTI)(C2SiEt3)(NCCH3)]ClO4(3), is described herein. Reaction of Fe(meso‐HMC)Cl(ClO4)]ClO4(1) with lithiated triethylsilylacetylene and subsequent exposure to oxygen yielded the bis‐alkynyl2containing the dehydrogenated tetraimine macrocycle (HMTI). Reduction of2by mossy zinc in acetonitrile yielded the mono‐alkynyl3. The structures of2and3were determined using single‐crystal X‐ray diffraction. Analysis of visible absorption and electrochemical data establishes the redox‐active nature of the HMTI macrocycle, and indicates significant interactions between the Fedπ and tetraimine π* orbitals. These deductions are further supported by density functional theory calculations.more » « less
-
This review focuses on alkynyl Prins and alkynyl aza-Prins cyclization processes, which involve intramolecular coupling of an alkyne with either an oxocarbenium or iminium electrophile. The oxocarbenium or iminium species can be generated through condensation- or elimination-type processes, to achieve an overall bimolecular annulation that enables the synthesis of both oxygen- and nitrogen-containing saturated heterocycles with different ring sizes and substitution patterns. Also discussed are cascade processes in which alkynyl Prins heterocyclic adducts react to trigger subsequent pericyclic reactions, including [4+2] cycloadditions and Nazarov electrocyclizations, to rapidly construct complex small molecules. Finally, examples of the use of alkynyl Prins and alkynyl aza-Prins reactions in the synthesis of natural products are described. The review covers the literature through the end of 2019. 1 Introduction 1.1 Alkyne-Carbonyl Coupling Pathways 1.2 Coupling/Cyclization Cascades Using the Alkynyl Prins Reaction 2 Alkynyl Prins Annulation (Oxocarbenium Electrophiles) 2.1 Early Work 2.2 Halide as Terminal Nucleophile 2.3 Oxygen as Terminal Nucleophile 2.4 Arene as Terminal Nucleophile (Intermolecular) 2.5 Arene Terminal Nucleophile (Intramolecular) 2.6 Cyclizations Terminated by Elimination 3 Synthetic Utility of Alkynyl Prins Annulation 3.1 Alkynyl Prins-Mediated Synthesis of Dienes for a [4+2] Cyclo- addition-Oxidation Sequence 3.2 Alkynyl Prins Cyclization Adducts as Nazarov Cyclization Precursors 3.3 Alkynyl Prins Cyclization in Natural Product Synthesis 4 Alkynyl Aza-Prins Annulation 4.1 Iminium Electrophiles 4.2 Activated Iminium Electrophiles 5 Alkynyl Aza-Prins Cyclizations in Natural Product Synthesis 6 Summary and Outlookmore » « less
An official website of the United States government
