Abstract In the biosynthesis of the tryptophan‐linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high‐resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.
more »
« less
Unspecific Peroxygenase Catalyzes Selective Remote‐Site Functionalizations
Abstract We describe the discovery of an unspecific peroxygenase (UPO) variant that catalyzes the remote‐site functionalization of halogenated and unsaturated hydrocarbons with high catalytic site‐specificity. UPOs are fungal heme‐thiolate biocatalysts with wide‐ranging oxidative activities, including C─H bond oxygenation, usually with limited regioselectivity. We describe here a wild‐type MroUPO, newly isolated in high yield from a previously uncharacterized strain ofMarasmius rotula. This variant, MroUPO‐TN, catalyzes the selective oxygenation of a range of haloalkanes, cyclic haloalkanes and cyclic olefins to generate useful remote‐site haloketones. The regioselectivity for eight‐membered rings reaches 99% with significant enantiomeric excess. Mechanistic studies performed with deuterated substrates and18O‐labeling experiments have revealed a synergy between intrinsic substrate properties and the highly aliphatic, heme active site. The observed selectivity offers routes to new and useful, bifunctional synthons and pharmacophores, thus providing practical ways to employ these natural and environmentally benign biocatalysts.
more »
« less
- Award ID(s):
- 2246289
- PAR ID:
- 10642355
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemCatChem
- Volume:
- 17
- Issue:
- 2
- ISSN:
- 1867-3880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L‐tryptophan to 4‐nitro‐L‐tryptophan, using nitric oxide (NO) and dioxygen (O2) as co‐substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)‐peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2−⋅)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4‐nitroindole, the product analogous to that obtained with TxtE. Moreover,15N and18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.more » « less
-
Abstract This study investigates dioxygen binding and 2‐oxoglutarate (2OG) coordination by two model non‐heme FeII/2OG enzymes: a class 7 histone demethylase (PHF8) that catalyzes the hydroxylation of its H3K9me2 histone substrate leading to demethylation reactivity and the ethylene‐forming enzyme (EFE), which catalyzes two competing reactions of ethylene generation and substratel‐Arg hydroxylation. Although both enzymes initially bind 2OG by using anoff‐line2OG coordination mode, in PHF8, the substrate oxidation requires a transition to anin‐linemode, whereas EFE is catalytically productive for ethylene production from 2OG in theoff‐linemode. We used classical molecular dynamics (MD), quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM metadynamics (QM/MM‐MetD) simulations to reveal that it is the dioxygen binding process and, ultimately, the protein environment that control the formation of thein‐lineFeIII‐OO⋅−intermediate in PHF8 and theoff‐lineFeIII‐OO⋅−intermediate in EFE.more » « less
-
Abstract Engineered heme protein biocatalysts provide an efficient and sustainable approach to develop amine‐containing compounds through C−H amination. A quantum chemical study to reveal the complete heme catalyzed intramolecular C−H amination pathway and protein axial ligand effect was reported, using reactions of an experimentally used arylsulfonylazide with hemes containing L=none, SH−, MeO−, and MeOH to simulate no axial ligand, negatively charged Cys and Ser ligands, and a neutral ligand for comparison. Nitrene formation was found as the overall rate‐determining step (RDS) and the catalyst with Ser ligand has the best reactivity, consistent with experimental reports. Both RDS and non‐RDS (nitrene transfer) transition states follow the barrier trend of MeO−−more » « less
An official website of the United States government
