Explanations of AI Agents' actions are considered to be an important factor in improving users' trust in the decisions made by autonomous AI systems. However, as these autonomous systems evolve from reactive, i.e., acting on user input, to proactive, i.e., acting without requiring user intervention, there is a need to explore how the explanation for the actions of these agents should evolve. In this work, we explore the design of explanations through participatory design methods for a proactive auto-response messaging agent that can reduce perceived obligations and social pressure to respond quickly to incoming messages by providing unavailability-related context. We recruited 14 participants who worked in pairs during collaborative design sessions where they reasoned about the agent's design and actions. We qualitatively analyzed the data collected through these sessions and found that participants' reasoning about agent actions led them to speculate heavily on its design. These speculations significantly influenced participants' desire for explanations and the controls they sought to inform the agents' behavior. Our findings indicate a need to transform users' speculations into accurate mental models of agent design. Further, since the agent acts as a mediator in human-human communication, it is also necessary to account for social norms in its explanation design. Finally, user expertise in understanding their habits and behaviors allows the agent to learn from the user their preferences when justifying its actions.
more »
« less
This content will become publicly available on June 12, 2026
Leveraging Generative AI to Improve Comprehensibility in Social Recommender Systems
Generative AI, particularly Large Language Models (LLMs), has revolutionized human-computer interaction by enabling the generation of nuanced, human-like text. This presents new opportunities, especially in enhancing explainability for AI systems like recommender systems, a crucial factor for fostering user trust and engagement. LLM-powered AI-Chatbots can be leveraged to provide personalized explanations for recommendations. Although users often find these chatbot explanations helpful, they may not fully comprehend the content. Our research focuses on assessing how well users comprehend these explanations and identifying gaps in understanding. We also explore the key behavioral differences between users who effectively understand AI-generated explanations and those who do not. We designed a three-phase user study with 17 participants to explore these dynamics. The findings indicate that the clarity and usefulness of the explanations are contingent on the user asking relevant follow-up questions and having a motivation to learn. Comprehension also varies significantly based on users’ educational backgrounds.
more »
« less
- Award ID(s):
- 2153509
- PAR ID:
- 10642535
- Publisher / Repository:
- ACM
- Date Published:
- Page Range / eLocation ID:
- 192 to 201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While EXplainable Artificial Intelligence (XAI) approaches aim to improve human-AI collaborative decision-making by improving model transparency and mental model formations, experiential factors associated with human users can cause challenges in ways system designers do not anticipate. In this paper, we first showcase a user study on how anchoring bias can potentially affect mental model formations when users initially interact with an intelligent system and the role of explanations in addressing this bias. Using a video activity recognition tool in cooking domain, we asked participants to verify whether a set of kitchen policies are being followed, with each policy focusing on a weakness or a strength. We controlled the order of the policies and the presence of explanations to test our hypotheses. Our main finding shows that those who observed system strengths early-on were more prone to automation bias and made significantly more errors due to positive first impressions of the system, while they built a more accurate mental model of the system competencies. On the other hand, those who encountered weaknesses earlier made significantly fewer errors since they tended to rely more on themselves, while they also underestimated model competencies due to having a more negative first impression of the model. Motivated by these findings and similar existing work, we formalize and present a conceptual model of user’s past experiences that examine the relations between user’s backgrounds, experiences, and human factors in XAI systems based on usage time. Our work presents strong findings and implications, aiming to raise the awareness of AI designers towards biases associated with user impressions and backgrounds.more » « less
-
This paper introduces an innovative approach to recommender systems through the development of an explainable architecture that leverages large language models (LLMs) and prompt engineering to provide natural language explanations. Traditional recommender systems often fall short in offering personalized, transparent explanations, particularly for users with varying levels of digital literacy. Focusing on the Advisor Recommender System, our proposed system integrates the conversational capabilities of modern AI to deliver clear, context-aware explanations for its recommendations. This research addresses key questions regarding the incorporation of LLMs into social recommender systems, the impact of natural language explanations on user perception, and the specific informational needs users prioritize in such interactions. A pilot study with 11 participants reveals insights into the system’s usability and the effectiveness of explanation clarity. Our study contributes to the broader human-AI interaction literature by outlining a novel system architecture, identifying user interaction patterns, and suggesting directions for future enhancements to improve decision-making processes in AI-driven recommendations.more » « less
-
TRIVEA: Transparent Ranking Interpretation using Visual Explanation of black-box Algorithmic rankersRanking schemes drive many real-world decisions, like, where to study, whom to hire, what to buy, etc. Many of these decisions often come with high consequences. For example, a university can be deemed less prestigious if not featured in a top-k list, and consumers might not even explore products that do not get recommended to buyers. At the heart of most of these decisions are opaque ranking schemes, which dictate the ordering of data entities, but their internal logic is inaccessible or proprietary. Drawing inferences about the ranking differences is like a guessing game to the stakeholders, like, the rankees (i.e., the entities who are ranked, like product companies) and the decision-makers (i.e., who use the rankings, like buyers). In this paper, we aim to enable transparency in ranking interpretation by using algorithmic rankers that learn from available data and by enabling human reasoning about the learned ranking differences using explainable AI (XAI) methods. To realize this aim, we leverage the exploration–explanation paradigm of human–data interaction to let human stakeholders explore subsets and groupings of complex multi-attribute ranking data using visual explanations of model fit and attribute influence on rankings. We realize this explanation paradigm for transparent ranking interpretation in TRIVEA, a visual analytic system that is fueled by: (i) visualizations of model fit derived from algorithmic rankers that learn the associations between attributes and rankings from available data and (ii) visual explanations derived from XAI methods that help abstract important patterns, like, the relative influence of attributes in different ranking ranges. Using TRIVEA, end users not trained in data science have the agency to transparently reason about the global and local behavior of the rankings without the need to open black-box ranking models and develop confidence in the resulting attribute-based inferences. We demonstrate the efficacy of TRIVEA using multiple usage scenarios and subjective feedback from researchers with diverse domain expertise.more » « less
-
Miller, Tim; Hoffman, Robert; Amir, Ofra; Holzinger, Andreas (Ed.)There is a growing interest within the AI research community in developing autonomous systems capable of explaining their behavior to users. However, the problem of computing explanations for users of different levels of expertise has received little research attention. We propose an approach for addressing this problem by representing the user's understanding of the task as an abstraction of the domain model that the planner uses. We present algorithms for generating minimal explanations in cases where this abstract human model is not known. We reduce the problem of generating an explanation to a search over the space of abstract models and show that while the complete problem is NP-hard, a greedy algorithm can provide good approximations of the optimal solution. We empirically show that our approach can efficiently compute explanations for a variety of problems and also perform user studies to test the utility of state abstractions in explanations.more » « less
An official website of the United States government
