Amorphous Indomethacin has enhanced bioavailability over its crystalline forms, yet amorphous forms can still possess a wide variety of structures. Here, Empirical Potential Structure Refinement (EPSR) has been used to provide accurate molecular models on the structure of five different amorphous Indomethacin samples, that are consistent with their high-energy X-ray diffraction patterns. It is found that the majority of molecules in amorphous Indomethacin are non-bonded or bonded to one neighboring molecule via a single hydrogen bond, in contrast to the doubly bonded dimers found in the crystalline state. The EPSR models further indicate a substantial variation in hydrogen bonding between different amorphous forms, leading to a diversity of chain structures not found in any known crystal structures. The majority of hydrogen bonds are associated with the carboxylic acid group, although a significant number of amide hydrogen bonding interactions are also found in the models. Evidence of some dipole–dipole interactions are also observed in the more structurally ordered models. The results are consistent with a distribution of Z-isomer intramolecular type conformations in the more disordered structures, that distort when stronger intermolecular hydrogen bonding occurs. The findings are supported by 1H and 2H NMR studies of the hydrogen bond dynamics in amorphous Indomethacin.
more »
« less
Hydrogen Bonding vs Dihydrogen Bonding in the Air Stable Primary Phosphine ortho ‐Phosphinophenol
Abstract ortho‐Phosphinophenol (oPP) is an unusual example of an air‐stable primary phosphine and a valuable precursor to a variety of useful organophosphorus compounds. The presence of PH2and OH functionalities offers the possibility of intermolecular and intramolecular P⋅⋅⋅HO hydrogen bonding (HB). The close proximity of these two groups also offers the opportunity for intramolecular PH2⋅⋅⋅HO dihydrogen bonding (DHB). This work provides experimental and computational evidence for these various types of interactions. In the solid state,oPPis associated by significant intermolecular P⋅⋅⋅HO hydrogen bonds as revealed by a single crystal X‐ray structural determination. Multinuclear NMR and IR spectroscopic studies, coupled with DFT computational studies, suggest thatoPPadopts multiple conformations in solution whose nature varies with the identity of the solvent. In the gas phase or non‐polar solvents (such as cyclohexane) an equilibrium between four conformations ofoPPis proposed. Interestingly,in silico, a conformational isomer having bifurcated intramolecular PH2⋅⋅⋅HODHB(PP4) is found to be more stable than a conformational isomer having intramolecular P⋅⋅⋅HOHB(PP1). In polar solvents (S), NMR studies indicate intermolecular OH⋅⋅⋅S HBplays a dominant role in modulating31P NMR chemical shifts over a 17 ppm range.
more »
« less
- Award ID(s):
- 2246810
- PAR ID:
- 10642646
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- European Journal of Inorganic Chemistry
- Volume:
- 27
- Issue:
- 25
- ISSN:
- 1434-1948
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The torsional barriers along the C aryl –C aryl axis of a pair of isosteric disubstituted biphenyls were determined by variable temperature 1 H NMR spectroscopy in three solvents with contrasted hydrogen bond accepting abilities (1,1,2,2-tetrachloroethane-d 2 , nitrobenzene-d 5 and dimethyl sulfoxide-d 6 ). One of the biphenyl scaffolds was substituted at its ortho and ortho ′ positions with N ′-acylcarbohydrazide groups that could engage in a pair of intramolecular N–H⋯O=C hydrogen bonding interactions at the ground state, but not at the transition state of the torsional isomerization pathway. The torsional barrier of this biphenyl was exceedingly low despite the presence of the hydrogen bonds (16.1, 15.6 and 13.4 kcal mol −1 in the three aforementioned solvents), compared to the barrier of the reference biphenyl (15.3 ± 0.1 kcal mol −1 on average). Density functional theory and the solvation model developed by Hunter were used to decipher the various forces at play. They highlighted the strong stabilization of hydrogen bond donating solutes not only by hydrogen bond accepting solvents, but also by weakly polar, yet polarizable solvents. As fast exchanges on the NMR time scale were observed above the melting point of dimethyl sulfoxide-d 6 , a simple but accurate model was also proposed to extrapolate low free activation energies in a pure solvent (dimethyl sulfoxide-d 6 ) from higher ones determined in mixtures of solvents (dimethyl sulfoxide-d 6 in nitrobenzene-d 5 ).more » « less
-
Abstract Strategic incorporation of ameta‐dimethylamino (–NMe2) group on the conformationally locked green fluorescent protein (GFP) model chromophore (m‐NMe2‐LpHBDI) has drastically altered molecular electronic properties, counterintuitively enhancing fluorescence of only the neutral and cationic chromophores in aqueous solution. A ~200‐fold decrease in fluorescence quantum yield ofm‐NMe2‐LpHBDI in alcohols (e.g., MeOH, EtOH and 2‐PrOH) supports this GFP‐derived compound as a fluorescence turn‐on water sensor, with large fluorescence intensity differences between H2O and ROH emissions in various H2O/ROH binary mixtures. A combination of steady‐state electronic spectroscopy, femtosecond transient absorption, ground‐state femtosecond stimulated Raman spectroscopy (FSRS) and quantum calculations elucidates an intermolecular hydrogen‐bonding chain between a solvent –OH group and the chromophore phenolic ring –NMe2and –OH functional groups, wherein fluorescence differences arise from an extended hydrogen‐bonding network beyond the first solvation shell, as opposed to fluorescence quenching via a dark twisted intramolecular charge‐transfer state. The absence of ameta‐NMe2group twisting coordinate upon electronic excitation was corroborated by experiments on control samples without themeta‐NMe2group or with bothmeta‐NMe2andpara‐OH groups locked in a six‐membered ring. These deep mechanistic insights stemming from GFP chromophore scaffold will enable rational design of organic, compact and environmentally friendly water sensors.more » « less
-
Abstract We describe convenient preparations ofN,N′‐dialkyl‐1,3‐propanedialdiminium chlorides,N,N′‐dialkyl‐1,3‐propanedialdimines, and lithiumN,N′‐dialkyl‐1,3‐propanedialdiminates in which the alkyl groups are methyl, ethyl, isopropyl, ortert‐butyl. For the dialdiminium salts, the N2C3backbone is always in thetrans‐s‐transconfiguration. Three isomers are present in solution except for thetert‐butyl compound, for which only two isomers are present; increasing the steric bulk of theN‐alkyl substituents shifts the equilibrium away from the (Z,Z) isomer in favor of the (E,Z), and (E,E) isomers. For the neutral dialdimines, crystal structures show that the methyl and isopropyl compounds adopt the (E,Z) form, whereas thetert‐butyl compound is in the (E,E) form. In aprotic solvents all four dialdimines (as well as the lithium dialdiminate salts) adoptcis‐s‐cisconformations in which there presumably is either an intramolecular hydrogen bond (or a lithium cation) between the two nitrogen atoms.more » « less
An official website of the United States government
