skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Highlighting Vulnerabilities in a Genomics Biocybersecurity Lab Through Threat Modeling and Security Testing [Highlighting Vulnerabilities in a Genomics Biocybersecurity Lab Through Threat Modeling and Security Testing]
Award ID(s):
1753900
PAR ID:
10642696
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SCITEPRESS - Science and Technology Publications
Date Published:
Page Range / eLocation ID:
626 to 631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, there has been a growing interest in so-called smart cities. These cities use technology to connect and enhance the lives of their citizens. Smart cities use many Internet of Things (loT) devices, such as sensors and video cameras, that are interconnected to provide constant feedback and up-to-date information on everything that is happening. Despite the benefits of these cities, they introduce a numerous new vulnerabilities as well. These smart cities are now susceptible to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or destroy computer systems.” Through the use of an educational and research-based loT test-bed with multiple networking layers and heterogeneous devices connected to simultaneously support networking research, anomaly detection, and security principles, we can pinpoint some of these vulnerabilities. This work will contribute potential solutions to these vulnerabilities that can hopefully be replicated in smart cities around the world. Specifically, in the transportation section of our educational smart city several vulnerabilities in the signal lights, street lights, and the cities train network were discovered. To conduct this research two scenarios were developed. These consisted of inside the network security and network perimeter security. For the latter we were able to find extensive vulnerabilities that would allow an attacker to map the entire smart city sub-network. Solutions to this problem are outlined that utilize an Intrusion Detection System and Port Mirroring. However, while we were able to exploit the city's Programmable Logic Controller (PLC) once inside the network, it was found that due to dated Supervisory Control and Data Acquisition (SCADA) systems, there were almost no solutions to these exploits. 
    more » « less
  2. Cybersecurity threats continue to increase and are impacting almost all aspects of modern life. Being aware of how vulnerabilities and their exploits are changing gives helpful insights into combating new threats. Applying dynamic topic modeling to a time-stamped cybersecurity document collection shows how the significance and details of concepts found in them are evolving. We correlate two different temporal corpora, one with reports about specific exploits and the other with research-oriented papers on cybersecurity vulnerabilities and threats. We represent the documents, concepts, and dynamic topic modeling data in a semantic knowledge graph to support integration, inference, and discovery. A critical insight into discovering knowledge through topic modeling is seeding the knowledge graph with domain concepts to guide the modeling process. We use Wikipedia concepts to provide a basis for performing concept phrase extraction and show how using those phrases improves the quality of the topic models. Researchers can query the resulting knowledge graph to reveal important relations and trends. This work is novel because it uses topics as a bridge to relate documents across corpora over time. 
    more » « less
  3. File systems have been developed for decades with the security-critical foundation provided by operating systems. However, they are still vulnerable to malware attacks and software defects. In this paper, we undertake the first attempt to systematically understand the security vulnerabilities in various file systems. We conduct an empirical study of 157 real cases reported in Common Vulnerabilities and Exposures (CVE). We characterize the file system vulnerabilities in different dimensions that include the common vulnerabilities leveraged by adversaries to initiate their attacks, their exploitation procedures, root causes, consequences, and mitigation approaches. We believe the insights derived from this study have broad implications related to the further enhancement of the security aspect of file systems, and the associated vulnerability detection tools. 
    more » « less