skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Incorporation of Azapeptoid Residues Into Collagen
Collagen, the major structural protein in connective tissue, adopts a right‐handed triple helix composed of peptide chains featuring repeating Gly‐Xaa‐Yaa tripeptide motifs. While the cyclic residues proline (Pro) and hydroxyproline (Hyp) are prevalent in the Xaa and Yaa positions due to their PPII‐favoring conformational properties, diverse acyclic peptoid (N‐alkylated Gly) residues can also stabilize the collagen fold. Here, we investigated the effects of N‐aminoglycine (aGly) derivatives—so‐called “azapeptoid” residues—on the thermal stability of collagen mimetic peptides (CMPs). Substitution of Pro at the central Xaa11 position with aGly resulted in destabilization of the triple helix, yet the introduction of select N′‐alkyl groups (isopropyl, butyl) partially restored thermal stability. Moreover, the N‐amino group of azapeptoid residues enhanced thermal CMP stability relative to an unsubstituted Gly analog. Kinetic studies revealed that the introduction of the hydrazide bonds in aGly and (iPr)aGly CMPs did not significantly impact triple helix refolding rates. Their modular late‐stage derivatization and tunable properties highlight azapeptoid residues as potentially valuable tools for engineering CMPs and probing the structural determinants of collagen folding.  more » « less
Award ID(s):
2109008
PAR ID:
10642791
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Peptide Science
Volume:
117
Issue:
5
ISSN:
2475-8817
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of natural and non-natural amino acid substitutions via incorporation of charged residues and a reactive handle on the thermal stability and assembly of multifunctional collagen mimetic peptides (CMPs). Experimentally, we observed inclusion of charged residues significantly decreased the melting temperature of CMP triple helices with further destabilization upon inclusion of the reactive handle. Atomistic simulations of a single CMP triple helix in explicit water showed increased residue-level and helical structural fluctuations caused by the inclusion of the reactive handle; however, these atomistic simulations cannot be used to predict changes in CMP melting transition. Coarse-grained (CG) simulations of CMPs at experimentally relevant solution conditions, showed, qualitatively, the same trends as experiments in CMP melting transition temperature with CMP design. These simulations show that when charged residues are included electrostatic repulsions significantly destabilize the CMP triple helix and that an additional inclusion of a reactive handle does not significantly change the melting transition. Based on findings from both experiments and simulations, the sequence design was refined for increased CMP triple helix thermal stability, and the reactive handle was utilized for the incorporation of the assembled CMPs within covalently crosslinked hydrogels. Overall, a unique approach was established for predicting stability of CMP triple helices for various sequences prior to synthesis, providing molecular insights for sequence design towards the creation of bulk nanostructured soft biomaterials. 
    more » « less
  2. Abstract Cis-peptide bonds are rare in proteins, and building blocks less favorable to the trans-conformer have been considered destabilizing. Although proline tolerates the cis-conformer modestly among all amino acids, for collagen, the most prevalent proline-abundant protein, all peptide bonds must be trans to form its hallmark triple-helix structure. Here, using host-guest collagen mimetic peptides (CMPs), we discover that surprisingly, even the cis-enforcing peptoid residues (N-substituted glycines) form stable triple-helices. Our interrogations establish that these peptoid residues entropically stabilize the triple-helix by pre-organizing individual peptides into a polyproline-II helix. Moreover, noting that the cis-demanding peptoid residues drastically reduce the folding rate, we design a CMP whose triple-helix formation can be controlled by peptoid cis-trans isomerization, enabling direct targeting of fibrotic remodeling in myocardial infarction in vivo. These findings elucidate the principles of peptoid cis-trans isomerization in protein folding and showcase the exploitation of cis-amide-favoring residues in building programmable and functional peptidomimetics. 
    more » « less
  3. Abstract The successful integration of 2D nanomaterials into functional devices hinges on developing fabrication methods that afford hierarchical control across length scales of theentireassembly. We demonstrate structural control over a class of crystalline 2D nanosheets assembled from collagen triple helices. By lengthening the triple helix unit through sequential additions of Pro‐Hyp‐Gly triads, we achieved sub‐angstrom tuning over the 2D lattice. These subtle changes influence the overall nanosheet size, which can be adjusted across the mesoscale size regime. The internal structure was observed by cryo‐TEM with direct electron detection, which provides real‐space high‐resolution images, in which individual triple helices comprising the lattice can be clearly discerned. These results establish a general strategy for tuning the structural hierarchy of 2D nanomaterials that employ rigid, cylindrical structural units. 
    more » « less
  4. Collagen, a vital protein that provides strength to various body tissues, has a triple helix structure containing three polypeptide chains. The chains are composed mostly of a tripeptide of glycine (G), proline (P), and hydroxyproline (O). Using molecular dynamics simulations and theoretical analysis, the study examines the mechanical response of collagen triple helix structures, made up of three different tripeptide units, when subjected to different fracture loading modes. The results show that collagen with GPO tripeptide units at their C-terminal are mechanically stronger than the POG and OGP units with a single amino-acid frame shift. Our work shows that the N-terminal has less effect on collagen fracture than the C-terminal. The differences in mechanical response are explained by the heterogenous rigidity of the amino acid backbone and the resulting shear lag effect near the terminal. The findings have potential applications in developing tough synthetic collagen for building materials and may stimulate further studies on the connection between terminal repeats and the mechanical-thermal behavior of other structural proteins such as silk, elastin, fibrin, and keratin. 
    more » « less
  5. Collagen mimetic peptides are composed of triple helices. Triple helical formation frequently utilizes charge pair interactions to direct protein assembly. The design of synthetic triple helices is challenging due to the large number of competing species and the overall fragile nature of collagen mimetics. A successfully designed triple helix incorporates both positive and negative criteria to achieve maximum specificity of the supramolecular assembly. Intrahelical charge pair interactions, particularly those involved in lysine–aspartate and lysine–glutamate pairs, have been especially successful both in driving helix specificity and for subsequent stabilization by covalent capture. Despite this progress, the important sequential and geometric relationships of charged residues in a triple helical context have not been fully explored for either supramolecular assembly or covalent capture stabilization. In this study, we compare the eight canonical axial and lateral charge pairs of lysine and arginine with glutamate and aspartate to their noncanonical, reversed charge pairs. These findings are put into the context of collagen triple helical design and synthesis. 
    more » « less