skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elastocaloric Response of Isotropic Liquid Crystalline Elastomers
Liquid crystalline elastomers (LCEs) are soft materials that associate order and deformation. Upon deformation, mechanically induced changes order affect entropy and can produce a caloric output (elastocaloric). Elastocaloric effects in materials continue to be considered for functional use as solid state refrigerants. Prior elastocaloric investigations of LCEs and related materials have measured ≈2 °C temperature changes upon deformation (100% strain). Here, the elastocaloric response of LCEs is explored that are prepared with a subambient nematic to isotropic transition temperature. These materials are referred as “isotropic” liquid crystalline elastomers. The LCEs are prepared by a two‐step thiol‐Michael/thiol‐ene reaction. This polymer network chemistry enhances elastic recovery and reduces hysteresis compared to acrylate‐based chemistries. The LCEs exhibit appreciable elastocaloric temperature changes upon deformation and recovery (> ± 3 °C, total ΔTof 6 °C) to deformation driven by minimal force (<< 1 MPa). Notably, the strong association of deformation and order and the resulting temperature change attained at low force achieves a responsivity of 14 °C MPa−1which is seven times greater than natural rubber.  more » « less
Award ID(s):
2105369
PAR ID:
10642814
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Small
Volume:
20
Issue:
32
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NoElastocaloric cooling is a promising solid-state alternative to vapor-compression refrigeration. In conventional systems, such as natural rubber, deformation induces entropy change accompanied by temperature release. Unloading the material restores the entropic state and is accompanied by cooling. Inverse elastocaloric effects have been detailed in shape memory alloys, where deformation induces loss of order and cooling. Here, we report on a distinctive inverse elastocaloric effect in liquid crystalline elastomers (LCEs) containing supramolecular hydrogen bonds. Upon deformation, the supramolecular LCE exhibits initial organization but then disorganizes as the intramesogenic hydrogen bonds are broken. Due to the liquid crystalline nature of the dimeric supramolecular bonds, the mechanochemical bond breakage manifests in a disruption in order. By disrupting the extent of liquid crystallinity in the system, we hypothesize that the network disorganizes to the deformation (e.g., entropy increases) and produces an inverse elastocaloric output.t Available 
    more » « less
  2. Abstract Liquid crystalline elastomers (LCEs) are stimuli‐responsive materials capable of undergoing large deformations. The thermomechanical response of LCEs is attributable to the coupling of polymer network properties and disruption of order between liquid crystalline mesogens. Complex deformations have been realized in LCEs by either programming the nematic director via surface‐enforced alignment or localized mechanical deformation in materials incorporating dynamic covalent chemistries. Here, the preparation of LCEs via thiol‐Michael addition reaction is reported that are amenable to surface‐enforced alignment. Afforded by the thiol‐Michael addition reaction, dynamic covalent bonds are uniquely incorporated in chemistries subject to surface‐enforce alignment. Accordingly, LCEs prepared with complex director profiles are able to be programmed and reprogrammed by (re)activating the dynamic covalent chemistry to realize distinctive shape transformations. 
    more » « less
  3. Abstract The electrically‐directed, isothermal response of liquid crystal elastomers (LCEs) to an applied electric field is a compelling approach to realize spatially tailorable, sequence‐controllable, and high‐frequency deformation. The electromechanical response is facilitated by coating aligned LCEs with compliant electrodes. Upon application of an electric field, the electrodes attract and generate Maxwell stress. The directional difference in moduli for aligned LCEs produces directional deformation of the material and does not require mechanical bias or framing. Here, LCEs prepared from a newly reported thiol‐ene reaction are explored as DEAs with improved mechanical and dielectric properties. This report details that incorporating a difunctional liquid crystalline monomer composed of allyl ether functional groups reduces Young's modulus, increases the dielectric constant, and improves cyclic recovery compared to an analogous LCE prepared by thiol‐ene polymerization. Electrically‐induced, isothermal deformation of as much as 30% strain is reported. The facile chemistry and enhanced electromechanical response reported here may enable the functional integration of LCEs in applications such as robotics. 
    more » « less
  4. Abstract Diarylethene‐functionalized liquid‐crystalline elastomers (DAE‐LCEs) containing thiol‐anhydride bonds were prepared and shown to undergo reversible, reprogrammable photoinduced actuation. Upon exposure to UV light, a monodomain DAE‐LCE generated 5.5 % strain. This photogenerated strain was demonstrated to be optically reversible over five cycles of alternating UV/Visible light exposure with minimal photochrome fatigue. The incorporation of thiol‐anhydride dynamic bonds allowed for retention of actuated states. Further, re‐programming of the nematic director was achieved by heating above the temperature for bond exchange to occur (70 °C) yet below the nematic‐to‐isotropic transition temperature (100 °C) such that order was maintained between mesogens. The observed thermal stability of each of the diarylethene isomers of over 72 h allowed for decoupling of photo‐induced processes and polymer network effects, showing that both polymer relaxation and back‐isomerization of the diarylethene contributed to LCE relaxation over a period of 12 hours after actuation unless bond exchange occurred. 
    more » « less
  5. Liquid crystalline elastomers (LCEs) prepared via thiol−ene photopolymerization result in homogeneous distribution of molecular weight between cross-links. Numerous prior reports emphasize that LCEs are material actuators that undergo a thermomechanical response associated with an order−disorder transition. However, modern and widely utilized approaches to create LCEs result in heterogeneous networks. Theoretical examination suggests that network heterogeneity and high degrees of cross-linking cause a continuous association of strain with temperature, rather than a first-order, stepwise association. Alternatively, thiol−ene photopolymerization historically yields homogeneous polymers with tailorable cross-link densities. This report extends these prior studies to formulations, which are conducive to LCE preparation. Specifically, this examination copolymerizes a liquid crystalline dialkene mesogen with a tetrathiol cross-linker and dithiol chain extender via a purely thiol−ene polymerization. Notably, this composition is amenable to surface-enforced alignment. This contribution exploits the tunability of thiol−ene photopolymerization to emphasize the influence of cross-linking on the coupling of strain and temperature. 
    more » « less