skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 26, 2026

Title: COMPACT MODULI OF ENRIQUES SURFACES OF DEGREE 2
We describe a geometric, stable pair compactification of the moduli space of Enriques surfaces with a numerical polarization of degree 2, and identify it with a semitoroidal compactification of the period space.  more » « less
Award ID(s):
2401104
PAR ID:
10642971
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nagoya Math Journal
Date Published:
Journal Name:
Nagoya Mathematical Journal
Volume:
259
ISSN:
0027-7630
Page Range / eLocation ID:
581 to 624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this paper we prove that the limit set of any Weil–Petersson geodesic ray with uniquely ergodic ending lamination is a single point in the Thurston compactification of Teichmüller space. On the other hand, we construct examples of Weil–Petersson geodesics with minimal non-uniquely ergodic ending laminations and limit set a circle in the Thurston compactification. 
    more » « less
  2. The universal centralizer of a semisimple algebraic group is the family of centralizers of regular elements, parametrized by their conjugacy classes. When the group is of adjoint type, we construct a smooth, log-symplectic fiberwise compactification of the universal centralizer by taking the closure of each fiber in the wonderful compactification. We use the geometry of the wonderful compactification to give an explicit description of the symplectic leaves of this new space. We also show that its compactified centralizer fibers are isomorphic to certain Hessenberg varieties—we apply this connection to compute the singular cohomology of the compactification, and to study the geometry of the corresponding universal Hessenberg family. 
    more » « less
  3. We define a class of transversal slices in spaces which are quasi-Poisson for the action of a complex semisimple group. This is a multiplicative analogue of Whittaker reduction. One example is the multiplicative universal centralizer, which is equipped with the usual symplectic structure in this way. We construct a smooth relative compactification of this space by taking the closure of each centralizer fiber in the wonderful compactification. By realizing this relative compactification as a transversal in a larger quasi-Poisson variety, we show that it is smooth and log-symplectic. 
    more » « less
  4. Abstract We determine the cones of effective and nef divisors on the toroidal compactification of the ball quotient model of the moduli space of complex cubic surfaces with a chosen line. From this we also compute the corresponding cones for the moduli space of unmarked cubic surfaces. 
    more » « less
  5. null (Ed.)
    In this paper, we construct examples of Weil–Petersson geodesics with nonminimal ending laminations which have [Formula: see text]-dimensional limit sets in the Thurston compactification of Teichmüller space. 
    more » « less