Recombination mediator proteins have come into focus as promising targets for cancer therapy, with synthetic lethal approaches now clinically validated by the efficacy of PARP inhibitors in treating BRCA2 cancers and RECQ inhibitors in treating cancers with microsatellite instabilities. Thus, understanding the cellular role of recombination mediators is critically important, both to improve current therapies and develop new ones that target these pathways. Our mechanistic understanding of BRCA2 and RECQ began in Escherichia coli. Here, we review the cellular roles of RecF and RecQ, often considered functional homologs of these proteins in bacteria. Although these proteins were originally isolated as genes that were required during replication in sexual cell cycles that produce recombinant products, we now know that their function is similarly required during replication in asexual or mitotic-like cell cycles, where recombination is detrimental and generally not observed. Cells mutated in these gene products are unable to protect and process replication forks blocked at DNA damage, resulting in high rates of cell lethality and recombination events that compromise genome integrity during replication.
more »
« less
This content will become publicly available on October 20, 2026
The bacterial MRE11-RAD50 and DNA2-WRN homologs process replication forks at distinct and separate loci on the chromosome
Human BRCA2 protects the DNA when replication forks stall, whereas MRE11-RAD50 and WRN-DNA2 process or partially degrade these substrates. When mutated, these genes result in distinct genetic instabilities and cancers, arguing they have unique, not redundant, functions. Escherichia coli encodes functional homologs of MRE11-RAD50 (SbcC-SbcD), WRN-DNA2 (RecQ-RecJ), and BRCA2 (RecF). Here, we use 2-dimensional gels, pulse-labelling, and replication-profiling analysis to show the bacterial homologs act at distinct substrates and loci on the chromosome. Whereas RecF and RecJ-RecQ protect and process DNA at arrested replication forks to facilitate repair, RecBCD and SbcC-SbcD protect and process DNA at sites where forks converge. Comparing the assays used in E. coli to human cells, we consider whether these cellular roles may be functionally conserved.
more »
« less
- Award ID(s):
- 1916625
- PAR ID:
- 10642976
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- FEBS letters
- ISSN:
- 0014-5793
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Copenhaver, Gregory P (Ed.)The ability to complete DNA replication as replisomes converge has recently been shown to be a highly regulated, multi-enzymatic process. Converging forks also are likely to generate unique supercoiled, tangled, or knotted substrates. These structures are typically resolved by one of the four topoisomerases encoded byEscherichia coli. However, identifying the cellular substrates and specific function for these essential enzymes which contain overlapping biochemical activities has remained challenging. Here, we show that Topo I and Topo IV are required to allow converging forks to complete chromosome replication. Impaired Topo I function leads to amplifications where forks converge, whereas inactivation of Topo IV prevents forks from converging and produces a dramatic loss of this chromosome region. The results are consistent with previous studies suggesting Topo I suppresses illegitimate initiations in the terminus region by disrupting R- and D-loops and demonstrate a specific requirement for Topo IV acting before replication completes to allow convergent forks to reach their doubling point. We propose that the positive supercoils arising between convergent forks are converted to precatenanes and resolved by Topo IV, when diminishing space may preclude gyrase from binding and functioning.more » « less
-
Abstract Oncogene-induced replication stress generates endogenous DNA damage that activates cGAS–STING-mediated signalling and tumour suppression1–3. However, the precise mechanism of cGAS activation by endogenous DNA damage remains enigmatic, particularly given that high-affinity histone acidic patch (AP) binding constitutively inhibits cGAS by sterically hindering its activation by double-stranded DNA (dsDNA)4–10. Here we report that the DNA double-strand break sensor MRE11 suppresses mammary tumorigenesis through a pivotal role in regulating cGAS activation. We demonstrate that binding of the MRE11–RAD50–NBN complex to nucleosome fragments is necessary to displace cGAS from acidic-patch-mediated sequestration, which enables its mobilization and activation by dsDNA. MRE11 is therefore essential for cGAS activation in response to oncogenic stress, cytosolic dsDNA and ionizing radiation. Furthermore, MRE11-dependent cGAS activation promotes ZBP1–RIPK3–MLKL-mediated necroptosis, which is essential to suppress oncogenic proliferation and breast tumorigenesis. Notably, downregulation ofZBP1in human triple-negative breast cancer is associated with increased genome instability, immune suppression and poor patient prognosis. These findings establish MRE11 as a crucial mediator that links DNA damage and cGAS activation, resulting in tumour suppression through ZBP1-dependent necroptosis.more » « less
-
Abstract The Mre11-Rad50-Nbs1 (MRN) complex recognizes and processes DNA double-strand breaks for homologous recombination by performing short-range removal of 5ʹ strands. Endonucleolytic processing by MRN requires a stably bound protein at the break site—a role we postulate is played by DNA-dependent protein kinase (DNA-PK) in mammals. Here we interrogate sites of MRN-dependent processing by identifying sites of CtIP association and by sequencing DNA-PK-bound DNA fragments that are products of MRN cleavage. These intermediates are generated most efficiently when DNA-PK is catalytically blocked, yielding products within 200 bp of the break site, whereas DNA-PK products in the absence of kinase inhibition show greater dispersal. Use of light-activated Cas9 to induce breaks facilitates temporal resolution of DNA-PK and Mre11 binding, showing that both complexes bind to DNA ends before release of DNA-PK-bound products. These results support a sequential model of double-strand break repair involving collaborative interactions between homologous and non-homologous repair complexes.more » « less
-
RING finger and WD repeat domain-containing protein 3 (RFWD3) is an E3 ligase known to facilitate homologous recombination by removing replication protein A (RPA) and RAD51 from DNA damage sites. Further, RPA-mediated recruitment of RFWD3 to stalled replication forks is essential for interstrand cross-link repair. Here, we report that in unperturbed human cells, RFWD3 localizes at replication forks and associates with proliferating cell nuclear antigen (PCNA) via its PCNA-interacting protein (PIP) motif. PCNA association is critical for the stability of RFWD3 and for DNA replication. Cells lacking RFWD3 show slower fork progression, a prolonged S phase, and an increase in the loading of several replication-fork components on the chromatin. These findings all point to increased frequency of stalled forks in the absence of RFWD3. The S-phase defect is rescued by WT RFWD3, but not by the PIP mutant, suggesting that the interaction of RFWD3 with PCNA is critical for DNA replication. Finally, we observe reduced ubiquitination of RPA in cells lacking RFWD3. We conclude that the stabilization of RFWD3 by PCNA at the replication fork enables the polyubiquitination of RPA and its subsequent degradation for proper DNA replication.more » « less
An official website of the United States government
