skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 3, 2026

Title: CRB Optimization Using a Parametric Scattering Model for Extended Targets in ISAC Systems
This paper presents a novel parametric scattering model (PSM) for sensing extended targets in integrated sensing and communication (ISAC) systems. The PSM addresses the limitations of traditional models by efficiently capturing the target’s angular characteristics through a compact set of key parameters, including the central angle and angular spread, enabling efficient optimization. Based on the PSM, we first derive the Cram´er-Rao bound (CRB) for parameter estimation and then propose a beamforming design algorithm to minimize the CRB while meeting both communication signal-to-interference-plusnoise ratio (SINR) and power constraints. By integrating the PSM into the beamforming optimization process, the proposed framework achieves superior CRB performance while balancing the tradeoff between sensing accuracy and communication quality. Simulation results demonstrate that the PSM-based approach consistently outperforms traditional unstructured and discrete scattering models, particularly in resource-limited scenarios, highlighting its practical applicability and scalability.  more » « less
Award ID(s):
2322191 2225575
PAR ID:
10643381
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated sensing and communication has emerged as a transformative technology for future wireless communication networks, enabling the simultaneous realization of radar sensing and communication functions by sharing available resources. To fully exploit the available spatial degrees of freedom in monostatic ISAC systems, we propose a dynamic array partitioning architecture that allows the base station to allocate antennas for transmitting dual-functional signals and receiving the corresponding echoes. Based on this architecture, we jointly design the transmit beamforming and array partitioning to minimize the Cram´er-Rao bound (CRB) for target directionof- arrival estimation, while ensuring compliance with signalto- interference-plus-noise ratio requirements for multiuser communication, power budget constraints, and array partitioning limitations. To address the resulting optimization problem, we develop an alternating algorithm leveraging alternating direction method of multipliers and semi-definite relaxation. Simulation results demonstrate that the proposed joint array partitioning and beamforming design significantly improves the CRB and the resulting DOA estimation performance. 
    more » « less
  2. Joint communications and sensing (JCAS) is envisioned as a key feature in future wireless communications networks. In massive MIMO-JCAS systems, the very large number of antennas causes excessively high computational complexity in beamforming designs. In this work, we investigate a low-complexity massive multiple-input-multiple-output (MIMO)-JCAS system employing the maximum-ratio transmission (MRT) scheme for both communications and sensing. We first derive closed-form expressions for the achievable communications rate and Cram´er–Rao bound (CRB) as functions of the large-scale fading channel coefficients. Then, we develop a power allocation strategy based on successive convex approximation to maximize the communications sum rate while guaranteeing the CRB constraint and transmit power budget. Our analysis shows that the introduction of sensing functionality increases the beamforming uncertainty and inter-user interference on the communications side. However, these factors can be mitigated by deploying a very large number of antennas. The numerical results verify our findings and demonstrate the power allocation efficiency. 
    more » « less
  3. In this paper, we investigate the integration of integrated sensing and communication (ISAC) and reconfigurable intelligent surfaces (RIS) for providing wide-coverage and ultrareliable communication and high-accuracy sensing functions. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multiuser multi-input single-output (MU-MISO) communications and radar sensing with the assistance of an RIS. We focus on both target detection and parameter estimation performance in terms of the signal-to-noise ratio (SNR) and Cramér-Rao bound (CRB), respectively. Two optimization problems are formulated for maximizing the achievable sum-rate of the multi-user communications under an SNR constraint for target detection or a CRB constraint for parameter estimation, the transmit power budget, and the unit-modulus constraint of the RIS reflection coefficients. Efficient algorithms are developed to solve these two complicated non-convex problems. We then extend the proposed joint design algorithms to the scenario with imperfect self-interference cancellation. Extensive simulation results demonstrate the advantages of the proposed joint beamforming and reflection designs compared with other schemes. In addition, it is shown that more RIS reflection elements bring larger performance gains for directof- arrival (DoA) estimation than for target detection. 
    more » « less
  4. Integrated sensing and communication has been identified as an enabling technology for forthcoming wireless networks. In an effort to achieve an improved performance trade-off between multiuser communications and radar sensing, this paper considers a dynamically-partitioned antenna array architecture for monostatic ISAC systems, in which each element of the array at the base station can function as either a transmit or receive antenna. To fully exploit the available spatial degrees of freedom for both communication and sensing functions, we jointly design the partitioning of the array between transmit and receive antennas together with the transmit beamforming in order to minimize the direction-of-arrival (DOA) estimation error, while satisfying constraints on the communication signal-to-interference-plusnoise ratio and the transmit power budget. An alternating algorithm based on Dinkelbach’s transform, the alternative direction method of multipliers, and majorization-minimization is developed to solve the resulting complicated optimization problem. To reduce the computational complexity, we also present a heuristic three-step strategy that optimizes the transmit beamforming after determining the antenna partitioning. Simulation results confirm the effectiveness of the proposed algorithms in significantly reducing the DOA estimation error. 
    more » « less
  5. We present a deep reinforcement learning approach to design an automotive radar system with integrated sensing and communication. In the proposed system, sparse transmit arrays with quantized phase shifter are used to carry out transmit beamforming to enhance the performance of both radar sensing and communication. Through interaction with environment, the automotive radar learns a reward that reflects the difference between mainlobe peak and the peak sidelobe level in radar sensing mode or communication user feedback in communication mode, and intelligently adjust its beamforming vector. The Wolpertinger policy based action-critic network is introduced for beamforming vector learning, which solves the dimension curse due to huge beamforming action space. 
    more » « less