skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 18, 2026

Title: Student and Teacher Perspectives on Requiring a Computer Science Course in High School
In recent years, eight states have adopted a graduation requirement in computer science (CS), and other states are considering similar requirements. Due to the recency of these requirements, little is known about student and teacher perceptions of course(s) that fulfill the requirement and their content. This project seeks to answer the question, What are the perceptions of students who are studying CS beyond high school and CS teachers of a high school CS requirement and its content? We used a mixed methods approach that included interview transcripts from students who took CS coursework in high school and are currently studying it in college (n = 9). We also used quantitative data from a survey of CS teachers (n = 2, 238) that asked for their perceptions of a CS graduation requirement. Most of the students felt that CS should be required in high school, and there was a wide variety of sentiment regarding what content should be included in such a course. For the high school teachers, about 85% felt that CS should be required. It is perhaps not surprising that most students who studied CS in college valued it at the high school level and thus supported a graduation requirement. What is more interesting is the diversity of content that they felt should belong in such a course. These findings serve as an important consideration for those implementing a CS graduation requirement.  more » « less
Award ID(s):
2311746
PAR ID:
10643536
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Page Range / eLocation ID:
1623 to 1624
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There are several changes anticipated in computer science (CS) education over the next decade, including updated student standards, rapidly changing impacts of artificial intelligence (AI), and an increasing number of school systems requiring a CS class for graduation. In order to prepare for these changes – as well as to address the equity issues that have plagued CS since its inception – we engaged in a project designed to reimagine content and pathways for high school CS education. As a collaborative project, we hosted multiple events for relevant parties (including K-12 educators and administrators, higher education faculty, industry professionals, state and district CS supervisors, and CS education researchers). These events were designed to collaboratively seek input for the creation of a series of reports recommending what a CS course that satisfies a high school graduation requirement should include, how that course should align with Advanced Placement (AP) and post-secondary CS instruction, and what pathways should exist for students after that introductory high school course. The portion of the project highlighted in this article contains an analysis of data collected from focus groups (n=21), interviews (n=10), and an in-person convening of participants from K-12, post-secondary, industry, and administrative roles (n=35). The data is centered on determining what CS content is essential for all high school students. Participants considered knowledge, skills, and dispositions across a range of CS and CS-adjacent topics and, through a variety of activities, described what new content should be taught when viewing through the lens of teaching CS to high school students in the year 2030 and what content should be prioritized. Our analysis sought to delineate and synthesize their sentiments. Six major priorities emerged from our analysis: societal impacts and ethical issues, algorithmic thinking, data and analysis, inclusive computing culture, AI, and career knowledge. The significance of our findings is that they present a broad overview of what a variety of relevant parties consider to be the most important CS content for high school students; this information is important for educators, administrators, and those who develop curriculum, standards, and/or teaching tools. 
    more » « less
  2. Traditionally, computer science (CS) in the United States has been an elective subject at the high school level. In recent years, however, some school systems have created a CS graduation requirement. Designing a required CS course that meets the needs of anticipated future advancements in the field necessitates exploring the research question, To better understand what these different groups perceive to be the essential content of a foundational high school CS course, we conducted a series of focus groups. These focus groups explored participants' (n = 21) thinking about what content would be most important to prioritize in a required high school CS course. Transcripts of the focus groups were abductively coded and then analyzed to determine what CS content priorities were identified and what disagreements about priorities exist. We found that participants (1) emphasized CS knowledge and skills, with minimal reference to dispositions, (2) prioritized content similar to that found in current CS standards, (3) developed broad, high-level descriptions of content, (4) identified contextually relevant factors, (5) foregrounded AI both a tool and as a subdomain of CS, and (6) emphasized computational thinking. These findings can inform further research on the design and implementation of a required high school CS course designed to meet the needs of the future as well as to support revisions of CS standards for high school students. 
    more » « less
  3. Creating effective professional development is critical to support high school teachers who teach computer science (CS) online. The context of this study is based on a current Research to Practice Partnership (RPP) between the University of North Carolina at Charlotte in the United States and North Carolina Virtual Public School (NCVPS). Ten high school teachers from the NCVPS who teach CS online participated in a summer workshop and recommended design, facilitation, and evaluation strategies to be included in effective professional development (PD). The summer workshop was conducted synchronously via Zoom. It provided the opportunity to discuss teacher perceptions related to the research questions "What design, facilitation, and assessment strategies are helpful to include in an AP Computer Science Advanced course?" and "What recommendations do you have for designing an online professional development course for high school teachers to teach computer science online?" The questions were posed through an online collaborative Jamboard, and the affinity diagram method was used for data collection and document analysis was conducted. The teacher posts were qualitatively analyzed to identify common themes. Findings for professional development on content design included CS content, how to teach CS, and CS tools and activities. For assessment, they recommended content knowledge assessments, including lab assignments, single and pair programming, and coding assessments. They recommended tools for supplemental instruction, integration of discussion boards for interaction, and tools and strategies to provide feedback for professional development. 
    more » « less
  4. This study explored the implementation of a novel approach to dual credit referred to as the facilitator model that can be suited for STEM-focused coursework such as courses focused on engineering, design, technology, and innovation. Unlike other models, high school teachers facilitate the implementation of a college course for both high school and college credit in collaboration with a university instructor who evaluates student learning. This novel approach was specifically implemented for an open-ended undergraduate design course within an engineering technology college, similar to many first-year engineering course experiences that emphasize project based learning, from a large research-intensive public university. For this study, the facilitator model was piloted with five high school teachers as facilitators of an undergraduate design course for dual credit at two innovative, STEM-focused public charter schools. The qualitative research design focused on examining (1) teacher needs while implementing, and perceptions of, the dual credit facilitator model for an undergraduate design course in urban public charter schools and (2) the impact of this model on student learning. This study included the collection and analysis of over 90 h of interviews, focus groups, surveys, and observations. Results provide a promising outlook for the use of the facilitator model when delivering dual credit content that is open ended and within the context of design, technology, and engineering by (1) navigating multiple institutional policies and processes related to dual-credit implementation, (2) providing ongoing support and fostering collaboration between high schools and university, (3) enabling students to earn directly transcripted college credits that count as a required course toward degree completion, and (4) increasing affordability and access to dual credit coursework. These potential advantages over other dual credit models can help address barriers that may limit access to dual credit coursework, specifically for underserved high schools. 
    more » « less
  5. Most U.S. states support college-readiness and access through dual enrollment, in which high school students enroll in college courses. Concurrent enrollment (CE) allows students to take college courses in their own high school, taught by high school teachers approved by the partner college. CE has positive effects on students' education, but rarely is CS available through CE. Unlike AP, CE provides college credit to students who are assessed throughout the course rather than by a single high-stakes exam/project. This panel will showcase four different types of post-secondary institutions' experiences offering CS-through-CE and discuss its potential as an entry point into CS for students underrepresented in computing, including those in urban and rural settings. Panelists will share challenges (such as teacher credentialing) and benefits of CS-through-CE. The audience will understand supports and barriers to creating CS-through-CE courses, will be provided with resources, and will crowd-source possible next steps in implementing CE as a model for broadening participation. 
    more » « less