skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 1, 2026

Title: Influence of Seasonal Succession on Microbiological and Physiochemical Composition in Shallow Estuarine Sediments
ABSTRACT Marine sediments harbour diverse microbial populations, but with increasing depth, these microbes are thought to have low activity due to depleted electron acceptors and lack of new organic matter after burial. However, physiochemical changes in environmental parameters could impact the metabolic activity of microbes in marine sediments. We performed seasonal sampling of shallow sediments to examine changes in population and abundance in relation to physiochemical changes over the year. We used amplicon sequencing, quantitative PCR and geochemistry to assess seasonal abundance of microbial populations at 3 depths (12–14, 38–40 and 48–50 cm) in shallow coastal sediments. 16S rRNA amplicon sequencing showed the sediment microbiome consists of common sediment taxa with minor seasonal variation. However, bacterial gene counts of 16S rRNA genes were highest in summer (2.50 × 1012 genes/g of sediment) and lowest in spring (1.64 × 1011 genes/g sediment). We observed differences in sediment temperature at depth across seasons (Summer 28°C–25.5°C; Winter 8.7°C–6.3°C) and correlated changes in dissolved organic matter composition that are not typically reported for this environment. We conclude deeper microbial populations in shallow sediments may experience seasonal abundance shifts resulting in a more variable subsurface community than initially presumed in the literature.  more » « less
Award ID(s):
2051069
PAR ID:
10643568
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
WIley
Date Published:
Journal Name:
Environmental Microbiology
Volume:
27
Issue:
10
ISSN:
1462-2912
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We compiled DNA and RNA isolation protocols for sediment bulk extraction and their yields from Guaymas Basin subsurface sediments recovered during International Ocean Discovery Program Expedition 385 and evaluated their sensitivity for metagenomic and amplicon analyses of subsurface microbial communities. Guaymas Basin sediments present a challenge for DNA and RNA recovery due to high concentrations of hydrocarbons, steep thermal gradients, and rapidly declining cell numbers downhole. Metagenomic library construction and sequencing was possible from as little as 0.2 to 0.5 ng DNA/cm3 sediment; polymerase chain reaction (PCR) amplification of 16S rRNA genes required in most cases approximately 1–2 ng DNA/cm3 sediment. At in situ temperatures of 50° to 60°C, decreasing DNA recovery leads to increasingly uncertain hit or miss outcomes and failures for metagenomic and amplicon analyses. DNA concentration profiles show that, even before these hot temperatures are reached, relatively moderate temperatures (near 40°C) have a major effect on microbial abundance and DNA yield. Comparison with cell count profiles shows that hydrothermal influence reduces downhole cell densities by multiple orders of magnitude compared to nonhydrothermal sediments. This effect is also visible at relatively moderate temperatures. RNA recovery is highly sensitive to downhole increasing temperatures and decreasing cell numbers, and was most efficient for microbial communities in cool, relatively shallow subsurface sediments. 
    more » « less
  2. Abstract Marine cable bacteria (Candidatus Electrothrix) and large colorless sulfur‐oxidizing bacteria (e.g., Beggiatoaceae) are widespread thiotrophs in coastal environments but may exert different influences on biogeochemical cycling. Yet, the factors governing their niche partitioning remain poorly understood. To map their distribution and evaluate their growth constraints in a natural setting, we examined surface sediments across seasons at two sites with contrasting levels of seasonal oxygen depletion in Chesapeake Bay using microscopy coupled with 16S rRNA gene amplicon sequencing and biogeochemical characterization. We found that cable bacteria, dominated by a single phylotype closely affiliated toCandidatus Electrothrixcommunis, flourished during winter and spring at a central channel site which experiences summer anoxia. Here, cable bacteria density was positively correlated with surface sediment chlorophyll, a proxy of phytodetritus sedimentation. Cable bacteria were also present with a lower areal density at an adjacent shoal site which supports bioturbating macrofauna. Beggiatoaceae were more abundant at this site, where their biomass was positively correlated with sediment respiration, but additionally potentially inhibited by sulfide accumulation which was evident during one summer. A springtime phytodetritus sedimentation event was associated with a proliferation of Beggiatoaceae and multipleCandidatus Electrothrixphylotypes, with cable bacteria reaching 1000 m length cm−2. These observations indicate the potential impact of a spring bloom in driving a hot moment of cryptic sulfur cycling. Our results suggest complex interactions between benthic thiotroph populations, with bioturbation and seasonal oscillations in bottom water dissolved oxygen, sediment sulfide, and organic matter influx as important drivers of their distribution. 
    more » « less
  3. Liu, Shuang-Jiang (Ed.)
    ABSTRACT Glacial retreat is changing biogeochemical cycling in the Arctic, where glacial runoff contributes iron for oceanic shelf primary production. We hypothesize that in Svalbard fjords, microbes catalyze intense iron and sulfur cycling in low-organic-matter sediments. This is because low organic matter limits sulfide generation, allowing iron mobility to the water column instead of precipitation as iron monosulfides. In this study, we tested this with high-depth-resolution 16S rRNA gene libraries in the upper 20 cm at two sites in Van Keulenfjorden, Svalbard. At the site closer to the glaciers, iron-reducing Desulfuromonadales , iron-oxidizing Gallionella and Mariprofundus , and sulfur-oxidizing Thiotrichales and Epsilonproteobacteria were abundant above a 12-cm depth. Below this depth, the relative abundances of sequences for sulfate-reducing Desulfobacteraceae and Desulfobulbaceae increased. At the outer station, the switch from iron-cycling clades to sulfate reducers occurred at shallower depths (∼5 cm), corresponding to higher sulfate reduction rates. Relatively labile organic matter (shown by δ 13 C and C/N ratios) was more abundant at this outer site, and ordination analysis suggested that this affected microbial community structure in surface sediments. Network analysis revealed more correlations between predicted iron- and sulfur-cycling taxa and with uncultured clades proximal to the glacier. Together, these results suggest that complex microbial communities catalyze redox cycling of iron and sulfur, especially closer to the glacier, where sulfate reduction is limited due to low availability of organic matter. Diminished sulfate reduction in upper sediments enables iron to flux into the overlying water, where it may be transported to the shelf. IMPORTANCE Glacial runoff is a key source of iron for primary production in the Arctic. In the fjords of the Svalbard archipelago, glacial retreat is predicted to stimulate phytoplankton blooms that were previously restricted to outer margins. Decreased sediment delivery and enhanced primary production have been hypothesized to alter sediment biogeochemistry, wherein any free reduced iron that could potentially be delivered to the shelf will instead become buried with sulfide generated through microbial sulfate reduction. We support this hypothesis with sequencing data that showed increases in the relative abundance of sulfate reducing taxa and sulfate reduction rates with increasing distance from the glaciers in Van Keulenfjorden, Svalbard. Community structure was driven by organic geochemistry, suggesting that enhanced input of organic material will stimulate sulfate reduction in interior fjord sediments as glaciers continue to recede. 
    more » « less
  4. Abstract Lacustrine carbonates are a powerful archive of paleoenvironmental information but are susceptible to post‐depositional alteration. Microbial metabolisms can drive such alteration by changing carbonate saturationin situ, thereby driving dissolution or precipitation. The net impact these microbial processes have on the primary δ18O, δ13C, and Δ47values of lacustrine carbonate is not fully known. We studied the evolution of microbial community structure and the porewater and sediment geochemistry in the upper ~30 cm of sediment from two shoreline sites at Green Lake, Fayetteville, NY over 2 years of seasonal sampling. We linked seasonal and depth‐based changes of porewater carbonate chemistry to microbial community composition, in situ carbon cycling (using δ13C values of carbonate, dissolved inorganic carbon (DIC), and organic matter), and dominant allochems and facies. We interpret that microbial processes are a dominant control on carbon cycling within the sediment, affecting porewater DIC, aqueous carbon chemistry, and carbonate carbon and clumped isotope geochemistry. Across all seasons and sites, microbial organic matter remineralization lowers the δ13C of the porewater DIC. Elevated carbonate saturation states in the sediment porewaters (Ω > 3) were attributed to microbes from groups capable of sulfate reduction, which were abundant in the sediment below 5 cm depth. The nearshore carbonate sediments at Green Lake are mainly composed of microbialite intraclasts/oncoids, charophytes, larger calcite crystals, and authigenic micrite—each with a different origin. Authigenic micrite is interpreted to have precipitated in situ from the supersaturated porewaters from microbial metabolism. The stable carbon isotope values (δ13Ccarb) and clumped isotope values (Δ47) of bulk carbonate sediments from the same depth horizons and site varied depending on both the sampling season and the specific location within a site, indicating localized (μm to mm) controls on carbon and clumped isotope values. Our results suggest that biological processes are a dominant control on carbon chemistry within the sedimentary subsurface of the shorelines of Green Lake, from actively forming microbialites to pore space organic matter remineralization and micrite authigenesis. A combination of biological activity, hydrologic balance, and allochem composition of the sediments set the stable carbon, oxygen, and clumped isotope signals preserved by the Green Lake carbonate sediments. 
    more » « less
  5. As marine sediments are buried, microbial communities transition from sulfate-reduction to methane-production after sulfate is depleted. When this biogenic methane diffuses into the overlying sulfate-rich sediments, it forms a sulfate-methane transition zone (SMTZ) because sulfate reducers deplete hydrogen concentrations and make hydrogenotrophic methanogenesis exergonic in the reverse direction, a process called the anaerobic oxidation of methane (AOM). Microbial participation in these processes is often inferred from geochemistry, genes, and gene expression changes with sediment depth, using sedimentation rates to convert depth to time. Less is known about how natural sediments transition through these geochemical states transition in real-time. We examined 16S rRNA gene amplicon libraries and metatranscriptomes in microcosms of anoxic sediment from the White Oak River estuary, NC, with three destructively sampled replicates with methane added (586-day incubations) and three re-sampled un-amended replicates (895-day incubations). Sulfate dropped to a low value (∼0.3 mM) on similar days for both experiments (312 and 320 days, respectively), followed by a peak in hydrogen, intermittent increases in methane-cycling archaea starting on days 375 and 362 (mostly Methanolinea spp. and Methanosaeta spp., and Methanococcoides sp. ANME-3), and a methane peak 1 month later. However, methane δ 13 C values only show net methanogenesis 6 months after methane-cycling archaea increase and 4 months after the methane peak, when sulfate is consistently below 0.1 mM and hydrogen increases to a stable 0.61 ± 0.13 nM (days 553–586, n = 9). Sulfate-reducing bacteria (mostly Desulfatiglans spp. and Desulfosarcina sp. SEEP-SRB1) increase in relative abundance only during this period of net methane production, suggesting syntrophy with methanogens in the absence of sulfate. The transition from sulfate reduction to methane production in marine sediments occurs through a prolonged period of methane-cycling by methanogens at low sulfate concentrations, and steady growth of sulfate reducers along with methanogens after sulfate is depleted. 
    more » « less