This content will become publicly available on September 16, 2026
Title: The role of cuticular hydrocarbon sexual dimorphism on Drosophila courtship
The evolution of mating signals is shaped by divergent roles and selective forces, which allow these signals to become multifunctional. Sexual dimorphism in mating signals can reflect this multifunctionality, where such dimorphism could contribute to both mate recognition and mate choice. Sexual dimorphism in mating signals is thought to arise due to divergent sex roles, driven by the interactions of several selective pressures. It has been suggested that, across taxa, both sexes can be choosy and result in sexual selection. However, whether sexual dimorphism in mating signals can predict its role in male courtship behaviour is still unclear. In this study, we used cuticular hydrocarbons (CHCs) in Drosophila species as a model to investigate the question, with CHCs serving as key chemical cues during courtship. This study investigates the relationship between CHC sexual dimorphism and its role in male courtship behaviour across 10 Drosophila species. Our results reveal variations in the degree of CHC sexual dimorphism across the test species. In addition, CHC detection was found to contribute to courtship initiation in most of the test species, but CHC sexual dimorphism did not predict male courtship behaviour. Notably, a longer courtship latency was observed following the loss of CHC detection, indicating that CHCs may convey information on mate quality. Our study suggests that sexual dimorphism in CHCs is not directly linked to its role in mating signal recognition and highlights the species-specific evolution of chemical signals in Drosophila courtship. more »« less
Fitzgerald, Sophia L; Anner, Sophia C; Tinghitella, Robin M
(, Behavioral Ecology)
Jennions, Michael D
(Ed.)
Abstract Sexual selection can contribute to speciation when signals and preferences expressed during mate choice are coupled within groups, but come to differ across groups (generating assortative mating). When new sexual signals evolve, it is important to investigate their roles in both mate location and courtship contexts, as both signaling functions are critical in mate choice. In previous work, researchers identified two new male morphs (silent and purring) in Hawaiian populations of the Pacific field cricket, Teleogryllus oceanicus. These morphs likely evolved because they protect males from an acoustically orienting parasitoid, yet still obtain some reproductive success. But, it remains unknown how the purring morph functions in close courtship encounters. We compared the relative success of the very recently evolved purring morph to that of the ancestral and silent morphs during courtship encounters. Purring males produce a novel courtship song and were not as successful in courtship as the ancestral type, but were mounted by females as often and as quickly as the obligately silent morph that arose and spread ~20 years ago. Purring males initiate courtship more quickly than other morphs, and females from populations where purring is common exhibit higher overall mounting rates. Thus, differences in the behavior of purring males and of females from populations where purring is common may have facilitated the origin of this novel sexual signal. We found no assortative mating between males of a given morph and females from their own population, and so we hypothesize that multiple male types will be maintained within the species because each achieves fitness in different ways.
Fernández, Y; Dowdy, N J; Conner, W E
(, Integrative Organismal Biology)
null
(Ed.)
Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communication is not essential for mating in C. arizonensis. Our results suggest that in B. trigona natural and sexual selection may work in parallel, to favor higher duty cycle clicking.
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE
Wang, Zinan; Receveur, Joseph P; Pu, Jian; Cong, Haosu; Richards, Cole; Liang, Muxuan; Chung, Henry
(, eLife)
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the water-proofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine-learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
Abstract Temperature influences the expression of a wide range of behavioral traits in ectotherms, including many involved in the initiation of pair formation and mating. Although opportunities to mate are thought to be greatest when male and female activity overlap, sex‐specific behaviors and physiology could result in mismatched thermal optima for male and female courtship. Here, we investigate how conflicts in the thermal sensitivity of male and female courtship activity affect patterns of mating across temperatures inEnchenopa binotatatreehoppers (Hemiptera: Membracidae). These plant‐feeding insects coordinate mating with plant‐borne vibrational signals exchanged in male–female duets prior to pair formation. We manipulated temperature across an ecologically relevant range (18–36ºC) and tested the likelihood of individual male and femaleE. binotatato engage in courtship activity using vibrational playbacks. We then staged male–female mating interactions across the same temperature range and quantified the thermal sensitivity of mating‐related behaviors across stages of mating. Specifically, we measured the timing of duetting, the likelihood for key pre‐copulatory behaviors to occur, whether the pair mated, and copulation duration. We found sex‐specific thermal sensitivity in courtship activity: Males showed a clear peak of activity at intermediate temperatures (27–30ºC), while females showed highest activity at the hotter thermal extreme. Mating rates, courtship duets, and copulatory attempts were less likely to occur at thermal extremes. Also, duetting occurred earlier and copulation was shortest at higher temperatures. Overall, our data suggest that sexes differ in how temperature affects mating‐related activity and some processes involved in mate coordination may be more sensitive than others across variable thermal environments.
Cong, Haosu, Luo, Mei, Chowdanayaka, Rajanikanth, Sbisa, Nadia, Wang, Zinan, Pu, Jian, and Chung, Henry. The role of cuticular hydrocarbon sexual dimorphism on Drosophila courtship. Retrieved from https://par.nsf.gov/biblio/10643680. Animal behaviour 228.
Cong, Haosu, Luo, Mei, Chowdanayaka, Rajanikanth, Sbisa, Nadia, Wang, Zinan, Pu, Jian, and Chung, Henry.
"The role of cuticular hydrocarbon sexual dimorphism on Drosophila courtship". Animal behaviour 228 (). Country unknown/Code not available: Elsevier. https://par.nsf.gov/biblio/10643680.
@article{osti_10643680,
place = {Country unknown/Code not available},
title = {The role of cuticular hydrocarbon sexual dimorphism on Drosophila courtship},
url = {https://par.nsf.gov/biblio/10643680},
abstractNote = {The evolution of mating signals is shaped by divergent roles and selective forces, which allow these signals to become multifunctional. Sexual dimorphism in mating signals can reflect this multifunctionality, where such dimorphism could contribute to both mate recognition and mate choice. Sexual dimorphism in mating signals is thought to arise due to divergent sex roles, driven by the interactions of several selective pressures. It has been suggested that, across taxa, both sexes can be choosy and result in sexual selection. However, whether sexual dimorphism in mating signals can predict its role in male courtship behaviour is still unclear. In this study, we used cuticular hydrocarbons (CHCs) in Drosophila species as a model to investigate the question, with CHCs serving as key chemical cues during courtship. This study investigates the relationship between CHC sexual dimorphism and its role in male courtship behaviour across 10 Drosophila species. Our results reveal variations in the degree of CHC sexual dimorphism across the test species. In addition, CHC detection was found to contribute to courtship initiation in most of the test species, but CHC sexual dimorphism did not predict male courtship behaviour. Notably, a longer courtship latency was observed following the loss of CHC detection, indicating that CHCs may convey information on mate quality. Our study suggests that sexual dimorphism in CHCs is not directly linked to its role in mating signal recognition and highlights the species-specific evolution of chemical signals in Drosophila courtship.},
journal = {Animal behaviour},
volume = {228},
publisher = {Elsevier},
author = {Cong, Haosu and Luo, Mei and Chowdanayaka, Rajanikanth and Sbisa, Nadia and Wang, Zinan and Pu, Jian and Chung, Henry},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.