skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of a rotating pyroconvective plume
BackgroundThere is an ongoing need for improved understanding of wildfire plume dynamics. AimsTo improve process-level understanding of wildfire plume dynamics including strong (>10 m s-1) fire-generated winds and pyrocumulus (pyroCu) development. MethodsKa-band Doppler radar and two Doppler lidars were used to quantify plume dynamics during a high-intensity prescribed fire and airborne laser scanning (ALS) to quantify the fuel consumption. Key resultsWe document the development of a strongly rotating (>10 m s-1) pyroCu-topped plume reaching 10 km. Plume rotation develops during merging of discrete plume elements and is characterised by inflow and rotational winds an order of magnitude stronger than the ambient flow. Deep pyroCu is initiated after a sequence of plume-deepening events that push the plume top above its condensation level. The pyroCu exhibits a strong central updraft (~35 m s-1) flanked by mechanically and evaporative forced downdrafts. The downdrafts do not reach the surface and have no impact on fire behaviour. ALS data show plume development is linked to large fuel consumption (~20 kg m-2). ConclusionsInteractions between discrete plume elements contributed to plume rotation and large fuel consumption led to strong updrafts triggering deep pyroCu. ImplicationsThese results identify conditions conducive to strong plume rotation and deep pyroCu initiation.  more » « less
Award ID(s):
2114251
PAR ID:
10643843
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.1071
Date Published:
Journal Name:
International Journal of Wildland Fire
Volume:
33
Issue:
3
ISSN:
1049-8001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Coupled fire‐atmosphere models often struggle to simulate important fire processes like fire generated flows, deep flaming fronts, extreme updrafts, and stratospheric smoke injection during large wildfires. This study uses the coupled fire‐atmosphere model, WRF‐Fire, to examine the sensitivities of some of these phenomena to the modeled total fuel load and its consumption. Specifically, the 2020 Bear Fire and 2021 Caldor Fire in California's Sierra Nevada are simulated using three fuel loading scenarios (1X, 4X, and 8X LANDFIRE derived surface fuel), while controlling the fire rate of spread using observations. This approach helps isolate the fuel loading and consumption needed to produce fire‐generated winds and plume rise comparable to radar observations of these events. Increasing fuel loads and corresponding fire residence time in WRF‐Fire leads to deep plumes in excess of 10 km, strong vertical velocities of 40–45 m s−1, and combustion fronts several kilometers in width (in the along wind direction). These results indicate that LANDFIRE‐based surface fuel loads in WRF‐Fire likely under‐represent fuel loading, having significant implications for simulating landscape‐scale wildfire processes, associated impacts on spread, and fire‐atmosphere feedbacks. 
    more » « less
  2. Abstract Characterizing pre‐fire fuel load and fuel consumption are critical for assessing fire behavior, fire effects, and smoke emissions. Two approaches for quantifying fuel load are airborne laser scanning (ALS) and the Fuel Characteristic Classification System (FCCS). The implementation of multitemporal ALS (i.e., the use of two or more ALS datasets across time at a given location) in conjunction with empirical models trained with field data can be used to measure fuel and estimate fuel consumption from a fire. FCCS, adapted for use in LANDFIRE (LF), provides 30 m resolution estimates of fuel load across the contiguous United States and can be used to estimate fuel consumption through software programs such as Fuel and Fire Tools (FFT). This study compares the two approaches for two wildfires in the northwestern United States having predominantly sagebrush steppe and ponderosa pine savanna ecosystems. The results showed that the LF FCCS approach yielded higher pre‐fire fuel loads and fuel consumption than the ALS approach and that the coarser scale LF FCCS data did not capture as much heterogeneity as the ALS data. At Tepee, 50.0% of the difference in fuel load and 87.3% of the difference in fuel consumption were associated with distinguishing sparse trees from rangeland. At Keithly, this only accounted for 8.2% and 8.6% of the differences, demonstrating the significance of capturing heterogeneity in rangeland vegetation structure and fire effects. Our results suggest future opportunities to use ALS data to better parametrize fine‐scale fuel load variability that LF FCCS does not capture. 
    more » « less
  3. Abstract On 8 August 2023, a wind-driven wildfire pushed across the city of Lahaina, located in West Maui, Hawaii, resulting in at least 100 deaths and an estimated economic loss of 4–6 billion dollars. The Lahaina wildfire was associated with strong, dry downslope winds gusting to 31–41 m s−1(60–80 kt; 1 kt ≈ 0.51 m s−1) that initiated the fire by damaging power infrastructure. The fire spread rapidly in invasive grasses growing in abandoned agricultural land upslope from Lahaina. This paper describes the synoptic and mesoscale meteorology associated with this event, as well as its predictability. Stronger-than-normal northeast trade winds, accompanied by a stable layer near the crest level of the West Maui Mountains, resulted in a high-amplitude mountain-wave response and a strong downslope windstorm. Mesoscale model predictions were highly accurate regarding the location, strength, and timing of the strong winds. Hurricane Dora, which passed approximately 1300 km to the south of Maui, does not appear to have had a significant impact on the occurrence and intensity of the winds associated with the wildfire event. The Maui wildfire was preceded by a wetter-than-normal winter and near-normal summer conditions. Significance StatementThe 2023 Maui wildfire was one of the most damaging of the past century, with at least 100 fatalities. This paper describes the meteorological conditions associated with the event and demonstrates that excellent model forecasts made the threat foreseeable. 
    more » « less
  4. Abstract Fire-generated tornadic vortices (FGTVs) linked to deep pyroconvection, including pyrocumulonimbi (pyroCbs), are a potentially deadly, yet poorly understood, wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high-impact wildfires during the 2020 fire season in California. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s −1 (60 kt), vortex depths of up to 4.9 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high-reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated mesoscale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form. 
    more » « less
  5. BackgroundPrescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. AimsWe developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. MethodsWe collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing fire progression and combustion for multiple hours. Key resultsPyrometrics were successfully extracted from UAS-IR imagery with sufficient spatiotemporal resolution to effectively measure and differentiate between fires. UAS-IR fuel consumption correlated with weight-based measurements of 10 1-m2 experimental burn plots, validating our approach to estimating consumption with a cost-effective UAS-IR sensor (R2 = 0.99; RMSE = 0.38 kg m-2). ConclusionsOur findings demonstrate UAS-IR pyrometrics are an accurate approach to monitoring fire behaviour and effects, such as measurements of consumption. Prescribed fire is a fine-scale process; a ground sampling distance of <2.3 m2 is recommended. Additional research is needed to validate other derived measurements. ImplicationsRefined fire monitoring coupled with refined objectives will be pivotal in informing fire management of best practices, justifying the use of prescribed fire and providing quantitative feedback in an uncertain environment. 
    more » « less