skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling
BackgroundSituational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members. AimsTo use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads. MethodsLidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility at multiple viewing distances, distance to roads, topographic position index, canopy height, and canopy cover served as predictors in presence-only maximum entropy modelling to predict lookout suitability based on 66 known lookout locations from recent fires. Key results and conclusionsThe model yielded a receiver-operating characteristic area under the curve of 0.929 with 67% of lookouts correctly identified by the model using a 0.5 probability threshold. Spatially explicit model prediction resulted in a map of the probability a location would be suitable for a lookout; when combined with a map of dominant view direction these tools could provide meaningful support to fire crews. ImplicationsThis approach could be applied to produce maps summarising potential lookout suitability and dominant view direction across wildland environments for use in pre-fire planning.  more » « less
Award ID(s):
2117865
PAR ID:
10643900
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.1071
Date Published:
Journal Name:
International Journal of Wildland Fire
Volume:
33
Issue:
9
ISSN:
1049-8001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildland firefighters must be able to maintain situational awareness to ensure their safety. Crew members, including lookouts and crew building handlines, rely on visibility to assess risk and communicate changing conditions. Geographic information systems and remote sensing offer potential solutions for characterizing visibility using models incorporating terrain and vegetation height. Visibility can be assessed using viewshed algorithms, and while previous research has demonstrated the utility of these algorithms across multiple fields, their use in wildland firefighter safety has yet to be explored. The goals of this study were to develop an approach for assessing visibility at the handline level, quantify the effects of spatial resolution on a lidar-driven visibility analysis, and demonstrate a set of spatial metrics that can be used to inform handline safety. Comparisons were made between elevation models derived from airborne lidar at varying spatial resolutions and those derived from LANDFIRE, a US-wide 30 m product. Coarser resolution inputs overestimated visibility by as much as 223%, while the finest-scale resolution input was not practical due to extreme processing times. Canopy cover and slope had strong linear relationships with visibility, with R2 values of 0.806 and 0.718, respectively. Visibility analyses, when conducted at an appropriate spatial resolution, can provide useful information to inform situational awareness in a wildland fire context. Evaluating situational awareness at the handline level prior to engaging a fire may help firefighters evaluate potential safety risks and more effectively plan handlines. 
    more » « less
  2. Each year, wildfires ravage the western U.S. and change the lives of millions of inhabitants. Situated in southern California, coastal Santa Barbara has witnessed devastating wildfires in the past decade, with nearly all ignitions started by humans. Therefore, estimating the risk imposed by unplanned ignitions in this fire-prone region will further increase resilience toward wildfires. Currently, a fire-risk map does not exist in this region. The main objective of this study is to provide a spatial analysis of regions at high risk of fast wildfire spread, particularly in the first two hours, considering varying scenarios of ignition locations and atmospheric conditions. To achieve this goal, multiple wildfire simulations were conducted using the FARSITE fire spread model with three ignition modeling methods and three wind scenarios. The first ignition method considers ignitions randomly distributed in 500 m buffers around previously observed ignition sites. Since these ignitions are mainly clustered around roads and trails, the second method considers a 50 m buffer around this built infrastructure, with ignition points randomly sampled from within this buffer. The third method assumes a Euclidean distance decay of ignition probability around roads and trails up to 1000 m, where the probability of selection linearly decreases further from the transportation paths. The ignition modeling methods were then employed in wildfire simulations with varying wind scenarios representing the climatological wind pattern and strong, downslope wind events. A large number of modeled ignitions were located near the major-exit highway running north–south (HWY 154), resulting in more simulated wildfires burning in that region. This could impact evacuation route planning and resource allocation under climatological wind conditions. The simulated fire areas were smaller, and the wildfires did not spread far from the ignition locations. In contrast, wildfires ignited during strong, northerly winds quickly spread into the wildland–urban interface (WUI) toward suburban and urban areas. 
    more » « less
  3. Background Existing fire spread models focus exclusively on wildland or urban fire simulation. Aims This study aims at an offline coupling of two fire spread models to enable a continuous simulation of a wildfire incident transitioning from wildland into wildland–urban interface (WUI) communities, evaluate the effects of wind input on simulation results and study the influence of building types on fire spread patterns. Methods The selected models are WRF-Fire, a wildland fire behaviour simulation platform, and SWUIFT, a model for fire spread inside the WUI. The 2021 Marshall Fire serves as the case study. A map of the fire’s timeline and location is generated using public information. Three simulation scenarios are analysed to study the effects of wind input resolution and building type on the predicted fire spread and damage. Key results The most accurate results are obtained using a high-resolution wind input and when incorporating different building types. Conclusions The offline coupling of models provides a reliable solution for fire spread simulation. Fire-resistant buildings likely helped limit community fire spread during the Marshall Fire. Implications The research is a first step toward developing simulation capabilities to predict the spread of wildfires within the wildland, WUI and urban environments. 
    more » « less
  4. Abstract AimRapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m). LocationEastern USA. Time period2017–2018. Taxa studiedTrees. MethodsWith a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics. ResultsModels using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity. Main conclusionsWe found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above. 
    more » « less
  5. Abstract BackgroundAedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for differentAedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used. MethodsWe searched on-line databases for predictive risk mapping studies for dengue, Zika, chikungunya, and yellow fever with no geographical or date restrictions. We included studies that needed to parameterise or fit their model to real-world epidemiological data and make predictions to new spatial locations of some measure of population-level risk of viral transmission (e.g. incidence, occurrence, suitability, etc.). ResultsWe found a growing number of arbovirus risk mapping studies across all endemic regions and arboviral diseases, with a total of 176 papers published 2002–2022 with the largest increases shortly following major epidemics. Three dominant use cases emerged: (i) global maps to identify limits of transmission, estimate burden and assess impacts of future global change, (ii) regional models used to predict the spread of major epidemics between countries and (iii) national and sub-national models that use local datasets to better understand transmission dynamics to improve outbreak detection and response. Temperature and rainfall were the most popular choice of covariates (included in 50% and 40% of studies respectively) but variables such as human mobility are increasingly being included. Surprisingly, few studies (22%, 31/144) robustly tested combinations of covariates from different domains (e.g. climatic, sociodemographic, ecological, etc.) and only 49% of studies assessed predictive performance via out-of-sample validation procedures. ConclusionsHere we show that approaches to map risk for different arboviruses have diversified in response to changing use cases, epidemiology and data availability. We identify key differences in mapping approaches between different arboviral diseases, discuss future research needs and outline specific recommendations for future arbovirus mapping. 
    more » « less