The co-packaging of optics and electronics provides a potential path forward to achieving beyond 50 Tbps top of rack switch packages. In a co-packaged design, the scaling of bandwidth, cost, and energy is governed by the number of optical transceivers (TxRx) per package as opposed to transistor shrink. Due to the large footprint of optical components relative to their electronic counterparts, the vertical stacking of optical TxRx chips in a co-packaged optics design will become a necessity. As a result, development of efficient, dense, and wide alignment tolerance chip-to-chip optical couplers will be an enabling technology for continued TxRx scaling. In this paper, we propose a novel scheme to vertically couple into standard 220 nm silicon on insulator waveguides from 220 nm silicon nitride on glass waveguides using overlapping, inverse double tapers. Simulation results using Lumerical’s 3D Finite Difference Time Domain solver are presented, demonstrating insertion losses below -0.13 dB for an inter-chip spacing of 1µm; 1 dB vertical and lateral alignment tolerances of approximately 2.6µm and ± 2.8µm, respectively; a greater than 300 nm 1 dB bandwidth; and 1 dB twist and tilt tolerances of approximately ± 2.3 degrees and 0.4 degrees, respectively. These results demonstrate the potential of our coupler for use in co-packaged designs requiring high performance, high density, CMOS compatible out of plane optical connections.
more »
« less
Graded Index Couplers for Next Generation Chip-to-Chip and Fiber-to-Chip Photonic Packaging
Abstract The transition towards designs which co-package electronic and photonic die together in data center switch packages has created a scaling path to Petabyte per second (Pbps) input/output (I/O) in such systems. In a co-packaged design, the scaling of bandwidth, cost, and energy will be governed by the number of optical I/O channels and the data rate per channel. While optical communication provide an opportunity to exploit wavelength division multiplexing (WDM) to scale data rate, the limited 127 µm pitch of V-groove based single mode fiber arrays and the use of active alignment and bonding for their packaging present challenges to scaling the number of optical channels. Flip-chip optical couplers which allow for low loss, broadband operation and automated passive assembly represent a solution for continued scaling. In this paper, we propose a novel scheme to vertically couple between silicon based waveguides on separate chips using graded index (GRIN) couplers in combination with an evanescent coupler. Simulation results using a 3D Finite-Difference Time-Domain (FDTD) solver are presented, demonstrating coupling losses as low as 0.35 dB for a chip-to-chip gap of 11 µm; 1-dB vertical and lateral alignment tolerances of approximately 2.45 µm and ± 2.66 µm, respectively; and a possible 1-dB bandwidth of greater than 1500 nm. These results demonstrate the potential of our coupler as a universal interface in future co-packaged optics systems.
more »
« less
- Award ID(s):
- 2345076
- PAR ID:
- 10643968
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Photonics
- ISSN:
- 2515-7647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An experimentally demonstrated, vertical chip-to-chip evanescent coupler between silicon nitride (Si₃N₄) and silicon (Si) is presented with the coupler loss measured to be 0.39 ± 1.06 dB at 1550 nm with a 1-dB bandwidth of 160 nm extending across the C-band, S-band, and L-band (1480-1640 nm). The average coupling loss was determined to be 0.73 dB for the 1480-1640 nm wavelength range with a ± 2σ tolerance of ± 0.92 dB. The 1-dB lateral alignment tolerance was 1.56 ± 0.14 μm at 1550 nm and the average tolerance was 1.38 ± 0.24 μm across the 1480-1640 nm wavelength regime. In addition, the average coupling loss varied by less than ± 0.35 dB and the average 1-dB alignment tolerance varied by less than ± 30 nm for temperatures varying from 23-60°C. Finally, the average coupling loss range was less than 1.5 dB range across four sets of identically packaged die. This is the first experimental demonstration of an inter-chip, passively assembled evanescent coupler using standard CMOS foundry processes for directly coupling between Si and Si₃N₄, overcoming a waveguide refractive index difference of Δn = 1.32 without requiring taper tip widths of less than 100 nm.more » « less
-
With the ever-increasing need for higher data rates, datacom and telecom industries are now migrating to silicon photonics to achieve higher data rates with reduced manufacturing costs. However, the optical packaging of integrated photonic devices with multiple I/O ports remains a slow and expensive process. We introduce an optical packaging technique to attach fiber arrays to a photonic chip in a single shot using CO2laser fusion splicing. We show a minimum coupling loss of 1.1 dB, 1.5 dB, and 1.4 dB per-facet for 2, 4, and 8-fiber arrays (respectively) fused to the oxide mode converters using a single shot from the CO2laser.more » « less
-
We experimentally demonstrate a silicon photonic chip-scale 16-channel wavelength division multiplexer (WDM) operating in the O-band. The silicon photonic chip consists of a common-input bus waveguide integrated with a sequence of 16 spectral add-drop filters implemented by 4-port contra-directional Bragg couplers and resonant cladding modulated perturbations. The combination of these features reduces the spectral bandwidth of the filters and improves the crosstalk. An apodization of the cladding modulated perturbations between the bus and the add/drop waveguides is used to optimize the strength of the coupling coefficient in the propagation direction to reduce the intra-channel crosstalk on adjacent channels. The fabricated chip was validated experimentally with a measured intra-channel crosstalk of ∼−18.9 dB for a channel spacing of 2.6 nm. The multiplexer/demultiplexer chip was also experimentally tested with a 10 Gbps data waveform. The resulting eye-pattern indicates that this approach is suitable for datacenter WDM-based interconnects in the O-band with large aggregate bandwidths.more » « less
-
Integrated nonlinear photonic circuits received rapid development in recent years, providing all-optical functionalities enabled by cavity-enhanced photon-photon interaction for classical and quantum applications. A high-efficiency fiber-to-chip interface is key to these integrated photonic circuits for quantum information tasks, as photon-loss is a major source that weakens quantum protocols. Here, overcoming material and fabrication limitation of thin-film aluminum nitride by adopting a stepwise waveguiding scheme, we demonstrate low-loss adiabatic fiber-optic couplers in aluminum nitride films with a substantial thickness (∼600 nm) for optimized nonlinear photon interaction. For telecom (1550 nm) and near-visible (780 nm) transverse magnetic-polarized light, the measured insertion loss of the fiber-optic coupler is -0.97 dB and -2.6 dB, respectively. Our results will facilitate the use of aluminum nitride integrated photonic circuits as efficient quantum resources for generation of entangled photons and squeezed light on microchips.more » « less
An official website of the United States government
