skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: cwojan/spatially_aggregated_parasite: spatially_aggregated_parasite
This repository release is to provide a DOI for the R code underlying a forthcoming publication in Ecosphere: Title: Parasite spatial distribution shapes parasite aggregation on host populations, but not at high parasite density Authors: Chris Wojan, Allison Shaw, Meggan Craft  more » « less
Award ID(s):
2321358
PAR ID:
10644081
Author(s) / Creator(s):
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
v1.0
Format(s):
Medium: X
Right(s):
(Not sure what to put here.)
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the role of biotic interactions in shaping natural communities is a long-standing challenge in ecology. It is particularly pertinent to parasite communities sharing the same host communities and individuals, as the interactions among parasites—both competition and facilitation—may have far-reaching implications for parasite transmission and evolution. Aggregated parasite burdens may suggest that infected host individuals are either more prone to infection, or that infection by a parasite species facilitates another, leading to a positive parasite–parasite interaction. However, parasite species may also compete for host resources, leading to the prediction that parasite–parasite associations would be generally negative, especially when parasite species infect the same host tissue, competing for both resources and space. We examine the presence and strength of parasite associations using hierarchical joint species distribution models fitted to data on resident parasite communities sampled on over 1300 small mammal individuals across 22 species and their resident parasite communities. On average, we detected more positive associations between infecting parasite species than negative, with the most negative associations occurring when two parasite species infected the same host tissue, suggesting that parasite species associations may be quantifiable from observational data. Overall, our findings suggest that parasite community prediction at the level of the individual host is possible, and that parasite species associations may be detectable in complex multi-species communities, generating many hypotheses concerning the effect of host community changes on parasite community composition, parasite competition within infected hosts, and the drivers of parasite community assembly and structure. 
    more » « less
  2. null (Ed.)
    Species invasions and range shifts can lead to novel host–parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host–parasite associations forming. This work provides general rules to help anticipate novel host–parasite associations created by climate change and other anthropogenic influences. 
    more » « less
  3. Abstract Identifying the factors that structure host–parasite interactions is fundamental to understand the drivers of species distributions and to predict novel cross-species transmission events. More phylogenetically related host species tend to have more similar parasite associations, but parasite specificity may vary as a function of transmission mode, parasite taxonomy or life history. Accordingly, analyses that attempt to infer host−parasite associations using combined data on different parasite groups may perform quite differently relative to analyses on each parasite subset. In essence, are more data always better when predicting host−parasite associations, or does parasite taxonomic resolution matter? Here, we explore how taxonomic resolution affects predictive models of host−parasite associations using the London Natural History Museum's database of host–helminth interactions. Using boosted regression trees, we demonstrate that taxon-specific models (i.e. of Acanthocephalans, Nematodes and Platyhelminthes) consistently outperform full models in predicting mammal-helminth associations. At finer spatial resolutions, full and taxon-specific model performance does not vary, suggesting tradeoffs between phylogenetic and spatial scales of analysis. Although all models identify similar host and parasite covariates as important to such patterns, our results emphasize the importance of phylogenetic scale in the study of host–parasite interactions and suggest that using taxonomic subsets of data may improve predictions of parasite distributions and cross-species transmission. Predictive models of host–pathogen interactions should thus attempt to encompass the spatial resolution and phylogenetic scale desired for inference and prediction and potentially use model averaging or ensemble models to combine predictions from separately trained models. 
    more » « less
  4. Amidst global shifts in the distribution and abundance of wildlife and livestock, we have only a rudimentary understanding of ungulate parasite communities and parasite-sharing patterns. We used qPCR and DNA metabarcoding of fecal samples to characterize gastrointestinal nematode (Strongylida) community composition and sharing among 17 sympatric species of wild and domestic large mammalian herbivore in central Kenya. We tested a suite of hypothesis-driven predictions about the role of host traits and phylogenetic relatedness in describing parasite infections. Host species identity explained 27–53% of individual variation in parasite prevalence, richness, community composition and phylogenetic diversity. Host and parasite phylogenies were congruent, host gut morphology predicted parasite community composition and prevalence, and hosts with low evolutionary distinctiveness were centrally positioned in the parasite-sharing network. We found no evidence that host body size, social-group size or feeding height were correlated with parasite composition. Our results highlight the interwoven evolutionary and ecological histories of large herbivores and their gastrointestinal nematodes and suggest that host identity, phylogeny and gut architecture—a phylogenetically conserved trait related to parasite habitat—are the overriding influences on parasite communities. These findings have implications for wildlife management and conservation as wild herbivores are increasingly replaced by livestock. 
    more » « less
  5. Scaraffia, Patricia (Ed.)
    Abstract Although parasites are by definition costly to their host, demonstrating that a parasite is regulating its host abundance in the field can be difficult. Here we present an example of a gregarine parasite, Ascogregarina taiwanensis Lien and Levine (Apicomplexa: Lecudinidae), regulating its mosquito host, Aedes albopictus Skuse (Diptera: Culicidae), in Bermuda. We sampled larvae from container habitats over 2 yr, assessed parasite prevalence, and estimated host abundance from egg counts obtained in neighboring ovitraps. We regressed change in average egg count from 1 yr to the next on parasite prevalence and found a significant negative effect of parasite prevalence. We found no evidence of host density affecting parasite prevalence. Our results demonstrate that even for a parasite with moderate virulence, host regulation can occur in the field. 
    more » « less