Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era.
more »
« less
Efficient Simulation of Open Quantum Systems on NISQ Trapped‐Ion Hardware
Abstract Simulating open quantum systems, which interact with external environments, presents significant challenges on noisy intermediate‐scale quantum (NISQ) devices due to limited qubit resources and noise. In this study, an efficient framework is proposed for simulating open quantum systems on NISQ hardware by leveraging a time‐perturbative Kraus operator representation of the system's dynamics. This approach avoids the computationally expensive Trotterization method and exploits the Lindblad master equation to represent time evolution in a compact form, particularly for systems satisfying specific commutation relations. The efficiency of this method is demonstrated by simulating quantum channels, such as the continuous‐time Pauli channel and damped harmonic oscillators, on NISQ trapped‐ion hardware, including IonQ Harmony and Quantinuum H1‐1. Additionally, hardware‐agnostic error mitigation techniques are introduced, including Pauli channel fitting and quantum depolarizing channel inversion, to enhance the fidelity of quantum simulations. These results show strong agreement between the simulations on real quantum hardware and exact solutions, highlighting the potential of Kraus‐based methods for scalable and accurate simulation of open quantum systems on NISQ devices. This framework opens pathways for simulating more complex systems under realistic conditions in the near term.
more »
« less
- Award ID(s):
- 2152168
- PAR ID:
- 10644377
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Quantum Technologies
- Volume:
- 8
- Issue:
- 9
- ISSN:
- 2511-9044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Designing quantum algorithms for simulating quantum systems has seen enormous progress, yet few studies have been done to develop quantum algorithms for open quantum dynamics despite its importance in modeling the system-environment interaction found in most realistic physical models. In this work we propose and demonstrate a general quantum algorithm to evolve open quantum dynamics on quantum computing devices. The Kraus operators governing the time evolution can be converted into unitary matrices with minimal dilation guaranteed by the Sz.-Nagy theorem. This allows the evolution of the initial state through unitary quantum gates, while using significantly less resource than required by the conventional Stinespring dilation. We demonstrate the algorithm on an amplitude damping channel using the IBM Qiskit quantum simulator and the IBM Q 5 Tenerife quantum device. The proposed algorithm does not require particular models of dynamics or decomposition of the quantum channel, and thus can be easily generalized to other open quantum dynamical models.more » « less
-
Abstract Quantum chemistry is a key application area for noisy‐intermediate scale quantum (NISQ) devices, and therefore serves as an important benchmark for current and future quantum computer performance. Previous benchmarks in this field have focused on variational methods for computing ground and excited states of various molecules, including a benchmarking suite focused on the performance of computing ground states for alkali‐hydrides under an array of error mitigation methods. State‐of‐the‐art methods to reach chemical accuracy in hybrid quantum‐classical electronic structure calculations of alkali hydride molecules on NISQ devices from IBM are outlined here. It is demonstrated how to extend the reach of variational eigensolvers with symmetry preserving Ansätze. Next, it is outlined how to use quantum imaginary time evolution and Lanczos as a complementary method to variational techniques, highlighting the advantages of each approach. Finally, a new error mitigation method is demonstrated which uses systematic error cancellation via hidden inverse gate constructions, improving the performance of typical variational algorithms. These results show that electronic structure calculations have advanced rapidly, to routine chemical accuracy for simple molecules, from their inception on quantum computers a few short years ago, and they point to further rapid progress to larger molecules as the power of NISQ devices grows.more » « less
-
Abstract We present an open-source software package called “Hamiltonian Open Quantum System Toolkit (HOQST), a collection of tools for the investigation of open quantum system dynamics in Hamiltonian quantum computing, including both quantum annealing and the gate-model of quantum computing. It features the key master equations (MEs) used in the field, suitable for describing the reduced system dynamics of an arbitrary time-dependent Hamiltonian with either weak or strong coupling to infinite-dimensional quantum baths. We present an overview of the theories behind the various MEs and provide examples to illustrate typical workflows in HOQST. We present an example that shows that HOQST can provide order of magnitude speedups compared to “Quantum Toolbox in Python (QuTiP), for problems with time-dependent Hamiltonians. The package is ready to be deployed on high performance computing (HPC) clusters and is aimed at providing reliable open-system analysis tools for noisy intermediate-scale quantum (NISQ) devices.more » « less
-
Quantum Hamiltonian simulation, which simulates the evolution of quantum systems and probes quantum phenomena, is one of the most promising applications of quantum computing. Recent experimental results suggest that Hamiltonian-oriented analog quantum simulation would be advantageous over circuit-oriented digital quantum simulation in the Noisy Intermediate-Scale Quantum (NISQ) machine era. However, programming analog quantum simulators is much more challenging due to the lack of a unified interface between hardware and software. In this paper, we design and implement SimuQ, the first framework for quantum Hamiltonian simulation that supports Hamiltonian programming and pulse-level compilation to heterogeneous analog quantum simulators. Specifically, in SimuQ, front-end users specify the target quantum system with Hamiltonian Modeling Language, and the Hamiltonian-level programmability of analog quantum simulators is specified through a new abstraction called the abstract analog instruction set (AAIS) and programmed in AAIS Specification Language by hardware providers. Through a solver-based compilation, SimuQ generates executable pulse schedules for real devices to simulate the evolution of desired quantum systems, which is demonstrated on superconducting (IBM), neutral-atom (QuEra), and trapped-ion (IonQ) quantum devices. Moreover, we demonstrate the advantages of exposing the Hamiltonian-level programmability of devices with native operations or interaction-based gates and establish a small benchmark of quantum simulation to evaluate SimuQ's compiler with the above analog quantum simulators.more » « less
An official website of the United States government
