skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Comparing Reflectivity from Space-Based and Ground-Based Radars During Detection of Rainbands in Two Tropical Cyclones
With varying tangential winds and combinations of stratiform and convective clouds, tropical cyclones (TCs) can be difficult to accurately portray when mosaicking data from ground-based radars. This study utilizes the Dual-frequency Precipitation Radar (DPR) from the Global Precipitation Measurement Mission (GPM) satellite to evaluate reflectivity obtained using four sampling methods of Weather Surveillance Radar 1988-Doppler data, including ground radars (GRs) in the GPM ground validation network and three mosaics, specifically the Multi-Radar/Multi-Sensor System plus two we created by retaining the maximum value in each grid cell (MAX) and using a distance-weighted function (DW). We analyzed Hurricane Laura (2020), with a strong gradient in tangential winds, and Tropical Storm Isaias (2020), where more stratiform precipitation was present. Differences between DPR and GR reflectivity were larger compared to previous studies that did not focus on TCs. Retaining the maximum value produced higher values than other sampling methods, and these values were closest to DPR. However, some MAX values were too high when DPR time offsets were greater than 120 s. The MAX method produces a more consistent match to DPR than the other mosaics when reflectivity is <35 dBZ. However, even MAX values are 3–4 dBZ lower than DPR in higher-reflectivity regions where gradients are stronger and features change quickly. The DW and MRMS mosaics produced values that were similar to one another but lower than DPR and MAX values.  more » « less
Award ID(s):
2011981 2011812
PAR ID:
10644684
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Atmosphere
Volume:
16
Issue:
3
ISSN:
2073-4433
Page Range / eLocation ID:
307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains over 14,000 hours of regional radar mosaics over the northeast US from 600+ winter storm days between 1996-2023. Winter storm days are defined when at least 2 out of 15 surface stations in the northeast US (see attached map) produced at least 1 inch of snow over the 24 hour period. Sequences of these mosaics aid in analyzing the precipitation area and the structures within winter storms. Radar reflectivity data is combined from the first, lowest (0.5 degree) elevation angle from 12 NEXRAD WSR-88D radars in the northeast US (see attached). The scans occur every 5-10 minutes from each radar depending on the radar scan settings.  The time label of the regional map is based on the scan time central radar, KOKX (Upton, NY). Scans from other radars in the region are used for that time as long as they are within 8 minutes of the KOKX scan. The polar radar data from each radar is interpolated to a regional 1202 km x 1202 km Cartesian grid with 2 km grid spacing covering 35.73-46.8 degN and 66.36-81.85 degW. Where the radar domains overlap, we take the highest reflectivity value. For dates after dual-polarization integration (2012 onwards), files contain the correlation coefficient (RHO_HV) field and a binary field  that can be used to “image mute” the reflectivity which reduces the visual prominence of melting and mixed precipitation commonly mistaken for heavy snow. Image muting is applied where radar reflectivity is ≥ 20 dBZ and RHO_HV is ≤ 0.97. This product is different from other widely used radar mosaics such as the MRMS produced by NOAA since it does not interpolate to a constant altitude and thus preserves the finer scale details in the reflectivity field. Because the data used to create these mosaics are not interpolated to a constant altitude, the altitude varies over the region (altitudes of radar scan used at each grid point are provided as a field for each data file). This data set is specifically designed to analyze fine-scale structures in winter storms. Part 1 contains files pre-dual polarization integration (1996-2012)Part 2 contains files post-dual polarization integration (2012-2023) 
    more » « less
  2. This dataset contains over 14,000 hours of regional radar mosaics over the northeast US from 600+ winter storm days between 1996-2023. Winter storm days are defined when at least 2 out of 15 surface stations in the northeast US (see attached map) produced at least 1 inch of snow over the 24 hour period. Sequences of these mosaics aid in analyzing the precipitation area and the structures within winter storms. Radar reflectivity data is combined from the first, lowest (0.5 degree) elevation angle from 12 NEXRAD WSR-88D radars in the northeast US (see attached). The scans occur every 5-10 minutes from each radar depending on the radar scan settings.  The time label of the regional map is based on the scan time central radar, KOKX (Upton, NY). Scans from other radars in the region are used for that time as long as they are within 8 minutes of the KOKX scan. The polar radar data from each radar is interpolated to a regional 1202 km x 1202 km Cartesian grid with 2 km grid spacing covering 35.73-46.8 degN and 66.36-81.85 degW. Where the radar domains overlap, we take the highest reflectivity value. For dates after dual-polarization integration (2012 onwards), files contain the correlation coefficient (RHO_HV) field and a binary field  that can be used to “image mute” the reflectivity which reduces the visual prominence of melting and mixed precipitation commonly mistaken for heavy snow. Image muting is applied where radar reflectivity is ≥ 20 dBZ and RHO_HV is ≤ 0.97. This product is different from other widely used radar mosaics such as the MRMS produced by NOAA since it does not interpolate to a constant altitude and thus preserves the finer scale details in the reflectivity field. Because the data used to create these mosaics are not interpolated to a constant altitude, the altitude varies over the region (altitudes of radar scan used at each grid point are provided as a field for each data file). This data set is specifically designed to analyze fine-scale structures in winter storms. Part 1 contains files pre-dual polarization integration (1996-2012)Part 2 contains files post-dual polarization integration (2012-2023) 
    more » « less
  3. This study evaluates moist physics in the Weather Research and Forecasting (WRF) Model using observations collected during the Olympic Mountains Experiment (OLYMPEX) field campaign by the Global Precipitation Measurement (GPM) satellite, including data from the GPM Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) instruments. Even though WRF using Thompson et al. microphysics was able to realistically simulate water vapor concentrations approaching the barrier, there was underprediction of cloud water content and rain rates offshore and over western slopes of terrain. We showed that underprediction of rain rate occurred when cloud water was underpredicted, establishing a connection between cloud water and rain-rate deficits. Evaluations of vertical hydrometeor mixing ratio profiles indicated that WRF produced too little cloud water and rainwater content, particularly below 2.5 km, with excessive snow above this altitude. Simulated mixing ratio profiles were less influenced by coastal proximity or midlatitude storm sector than were GMI profiles. Evaluations of different synoptic storm sectors suggested that postfrontal storm sectors were simulated most realistically, while warm sectors had the largest errors. DPR observations confirm the underprediction of rain rates noted by GMI, with no dependence on whether rain occurs over land or water. Finally, WRF underpredicted radar reflectivity below 2 km and overpredicted above 2 km, consistent with GMI vertical mixing ratio profiles. 
    more » « less
  4. This paper describes the deployment and features of CSUCHIVO radar during the RELAMPAGO campaign in Argentina. Intercomparison with GPM-DPR is done using Volume Matching. Vertical profile analysis of storms is also shown and a list of GPM overpasses and summary of the tallest storms during the campaign are also included. The results show that CHIVO agree well with GPM in terms of reflectivity and microphysical structure of clouds and show the value of CHIVO for ground validation. 
    more » « less
  5. Abstract The Echo Classification from COnvectivity (ECCO) algorithm identifies convective and stratiform types of radar echo in three dimensions. It is based on the calculation of reflectivity texture—a combination of the intensity and the heterogeneity of the radar echoes on each horizontal plane in a 3D Cartesian volume. Reflectivity texture is translated into convectivity, which is designed to be a quantitative measure of the convective nature of each 3D radar grid point. It ranges from 0 (100% stratiform) to 1 (100% convective). By thresholding convectivity, a more traditional qualitative categorization is obtained, which classifies radar echoes as convective, mixed, or stratiform. In contrast to previous algorithms, these echo-type classifications are provided on the full 3D grid of the reflectivity field. The vertically resolved classifications, in combination with temperature data, allow for subclassifications into shallow, mid-, deep, and elevated convective features, and low, mid-, and high stratiform regions—again in three dimensions. The algorithm was validated using datasets collected over the U.S. Great Plains during the PECAN field campaign. An analysis of lightning counts shows ∼90% of lightning occurring in regions classified as convective by ECCO. A statistical comparison of ECCO echo types with the well-established GPM radar precipitation-type categories show 84% (88%) of GPM stratiform (convective) echo being classified as stratiform (convective) or mixed by ECCO. ECCO was applied to radar grids for the continental United States, the United Arab Emirates, Australia, and Europe, illustrating its robustness and adaptability to different radar grid characteristics and climatic regions. 
    more » « less