skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 22, 2026

Title: Feasibility of phase-locked transcranial magnetic stimulation of cerebellum for the treatment of essential tremor
Abstract Objective.Cerebellar transcranial magnetic stimulation (TMS) has been proposed to suppress limb tremors in essential tremor (ET), but mixed results have been reported so far, both when pulses are applied repetitively TMS (rTMS) and in bursts. We aim to investigate the cellular effects of TMS on the cerebellum under ET through numerical simulations.Approach.A computational model of the olivo-cerebello-thalamocortical pathways exhibiting the main neural biomarkers of ET (i.e. circuit-wide tremor-locked neural oscillations) was expanded to incorporate the effects of TMS-induced electric field (E-field) on Purkinje cells. TMS pulse amplitude, frequency, and temporal pattern were varied, and the resultant effects on ET biomarkers were assessed. Four levels of cellular response to TMS were considered, ranging from low to high cell recruitment underneath the coil, and three stimulation patterns were tested, i.e. rTMS, irregular TMS (ir-TMS, pulses were arranged according to Sobol sequences with average frequency matching rTMS), and phase-locked TMS (PL-TMS).Main results.rTMS can suppress ET oscillations, but its efficacy depends on tremor frequency and recruitment level, with these factors shaping a narrow range of effective settings. The ratio between tremor and rTMS frequencies also affects the neural response and further narrows the span of viable settings, while ir-TMS is ineffective. PL-TMS is highly effective and robust against changes to cell recruitment level and tremor frequency. Across all scenarios, PL-TMS provides a rapid (i.e. within seconds) suppression of tremor oscillations and, when both PL-TMS and rTMS are effective, the time to tremor suppression decreases by 50% or more in PL-TMS versus rTMS. At the cellular level, PL-TMS operates by disrupting the synchronization along the olivo-cerebellar loop, and the preferred phases map onto the mid-region of the silent period between complex spikes of the Purkinje cells.Significance.Cerebellar PL-TMS can provide robust suppression of ET oscillations while operating within safety boundaries.  more » « less
Award ID(s):
1845348
PAR ID:
10645009
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Neural Engineering
Volume:
22
Issue:
3
ISSN:
1741-2560
Page Range / eLocation ID:
036019
Subject(s) / Keyword(s):
Feasibility Studies Computer Simulation Neurological Models Purkinje Cells Cerebellum Essential Tremor Phase-Locked Stimulation Transcranial Magnetic Stimulation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the most common adult movement disorder, can be transiently suppressed via transcranial electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression is sustained shortly after the end of the stimulation and can be phenomenologically predicted. Finally, we use feature-based statistical-learning and neurophysiological-modelling to show that the suppression of ET is mechanistically attributed to a disruption of the temporal coherence of the aberrant oscillations in the olivocerebellar loop, thus establishing its causal role. The suppression of aberrant neural oscillation via phase-locked driven disruption of temporal coherence may in the future represent a powerful neuromodulatory strategy to treat brain disorders. 
    more » « less
  2. Background: Coil placement on the cerebellum lacks accuracy in targeting the intended lobules and limits the efficacy of cerebellar transcranial magnetic stimulation (TMS) in treating movement disorders. Objective: Develop a multiscale computational pipeline and method to rapidly predict the cellular response to cerebellar TMS and optimize the coil placement accordingly for lobule-specific activation. Methods: The pipeline integrates 3T T1/T2-weighted MRI scans of the human cerebellum, lobule parcellation, and finite element models of the TMS-induced electric (E-) fields for figure-of-eight coils (MagStim D70) and double-cone coils (Deymed 120BFV). A constrained optimization method is developed to estimate the fiber bundles from cerebellar cortices to deep nuclei and, for both coil types, find the coil placement and orientation that maximize the E-field intensity in a user-selected lobule. Multicompartmental Purkinje cell models with realistic axon geometries and Gaussian process regression are added to predict the recruitment in the Purkinje layer. Results: Our pipeline was tested in five individuals to target the left lobule VIII and resulted in normalized E-field intensities at the target 49.6±25.6% (D70) and 29.3±17.7% (120BFV) higher compared to standard coil positions (i.e., 3 cm left, 1 cm below the inion), mean±S.D. The minimum pulse intensity to recruit Purkinje cells on a 4 mm2-surface in the target decreased by 21.6% (range: 4.7-55.0%) and 10.7% (range: 7.9-18.2%), and the spillover to adjacent lobules decreased by 70.6±16.3% and 71.7±20.8% compared to standard positions (D70 and 120BFV, respectively). Conclusion: Our tools are effective at targeting specific lobules and pave the way toward patient-specific setups. 
    more » « less
  3. Essential tremor (ET) is among the most prevalent movement disorders, but its origins are elusive. The inferior olivary nucleus (ION) has been hypothesized as the prime generator of tremor because of the pacemaker properties of ION neurons, but structural and functional changes in ION are unlikely under ET. Abnormalities have instead been reported in the cerebello-thalamo-cortical network, including dysfunctions of the GABAergic projections from the cerebellar cortex to the dentate nucleus. It remains unclear, though, how tremor would relate to a dysfunction of cerebellar connectivity. To address this question, we built a computational model of the cortico-cerebello-thalamo-cortical loop. We simulated the effects of a progressive loss of GABA A α 1 -receptor subunits and up-regulation of α 2/3 -receptor subunits in the dentate nucleus, and correspondingly, we studied the evolution of the firing patterns along the loop. The model closely reproduced experimental evidence for each structure in the loop. It showed that an alteration of amplitudes and decay times of the GABAergic currents to the dentate nucleus can facilitate sustained oscillatory activity at tremor frequency throughout the network as well as a robust bursting activity in the thalamus, which is consistent with observations of thalamic tremor cells in ET patients. Tremor-related oscillations initiated in small neural populations and spread to a larger network as the synaptic dysfunction increased, while thalamic high-frequency stimulation suppressed tremor-related activity in thalamus but increased the oscillation frequency in the olivocerebellar loop. These results suggest a mechanism for tremor generation under cerebellar dysfunction, which may explain the origin of ET. 
    more » « less
  4. Cerebellar-prefrontal connectivity has been recognized as important for behaviors ranging from motor coordination to cognition. Many of these behaviors are known to involve excitatory or inhibitory modulations from the prefrontal cortex. We used cerebellar transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) to probe cerebellar-evoked electrical activity in prefrontal cortical areas and used magnetic resonance spectroscopy (MRS) measures of prefrontal GABA and glutamate levels to determine if they are correlated with those potentials. Cerebellar-evoked bilateral prefrontal synchrony in the theta to gamma frequency range showed patterns that reflect strong GABAergic inhibitory function (r = − 0.66, p = 0.002). Stimulation of prefrontal areas evoked bilateral prefrontal synchrony in the theta to low beta frequency range that reflected, conversely, glutamatergic excitatory function (r = 0.66, p = 0.002) and GABAergic inhibitory function (r = − 0.65, p = 0.002). Cerebellar-evoked prefrontal synchronization had opposite associationswith cognition and motor coordination: it was positively associated with workingmemory performance (r =0.57, p = 0.008) but negatively associated with coordinated motor function as measured by rapid finger tapping (r = − 0.59, p = 0.006). The results suggest a relationship between regional GABA levels and interregional effects on synchrony. Stronger cerebellar-evoked prefrontal synchrony was associated with better working memory but surprisingly worse motor coordination, which suggests competing effects for motor activity and cognition. The data supports the use of a TMS-EEG-MRS approach to study the neurochemical basis of large-scale oscillations modulated by the cerebellar-prefrontal connectivity. 
    more » « less
  5. Abstract Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7–14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2,PAX6,TMEM266,KCNIP4), the Bergmann glial cells (QK1,DAO), and the Purkinje cell layer (ARHGEF33,KIT,MX1,MYH10,PPP1R17,SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study. 
    more » « less