Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects.
more »
« less
This content will become publicly available on November 20, 2025
Morphology and line tension of twist disclinations in a nematic liquid crystal
This work characterizes twist disclinations in nematic liquid crystals, using confocal microscopy to measure their 3D profile and test theoretical predictions, and using magnetic fields to deform the disclinations and measure their line tension.
more »
« less
- Award ID(s):
- 2003659
- PAR ID:
- 10645282
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 20
- Issue:
- 45
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 9050 to 9059
- Subject(s) / Keyword(s):
- Liquid Crystals, Topological Defects, Disclinations, Magnetic Fields, Line Tension
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Liquid crystal elastomers (LCEs) hold a major promise as a versatile material platform for smart soft coatings since their orientational order can be predesigned to program a desired dynamic profile. In this work, we introduce temperature-responsive dynamic coatings based on LCEs with arrays of singular defects-disclinations that run parallel to the surface. The disclinations form in response to antagonistic patterns of the molecular orientation at the top and bottom surfaces, imposed by the plasmonic mask photoalignment. Upon heating, an initially flat LCE coating develops linear microchannels located above each disclination. The stimulus that causes a non-flat profile of LCE coatings upon heating is the activation force induced by the gradients of molecular orientation around disclinations. To describe the formation of microchannels and their thermal response, we adopt a Frank–Oseen model of disclinations in a patterned director field and propose a linear elasticity theory to connect the complex spatially varying molecular orientation to the displacements of the LCE. The thermo-responsive surface profiles predicted by the theory and by the finite element modeling are in good agreement with the experimental data; in particular, higher gradients of molecular orientation produce a stronger modulation of the coating profile. The elastic theory and the finite element simulations allow us to estimate the material parameter that characterizes the elastomer coating's response to the thermal activation. The disclination-containing LCEs show potential as soft dynamic coatings with a predesigned responsive surface profile.more » « less
-
Abstract Linear defect‐disclinations are of fundamental interest in understanding complex structures explored by soft matter physics, elementary particles physics, cosmology, and various branches of mathematics. These defects are also of practical importance in materials applications, such as programmable origami, directed colloidal assembly, and command of active matter. Here an effective engineering approach is demonstrated to pattern molecular orientations at two flat confining surfaces that produce complex yet designable networks of singular disclinations of strength 1/2. Depending on the predesigned director patterns at the bounding plates, the produced disclinations are either surface‐anchored, connecting desired sites at the boundaries, or freely suspended in bulk, forming ordered arrays of polygons and wavy lines. The capability is shown to control the radius of curvature, size, and shape of disclinations by varying uniform alignment orientation on one of these confining plates. The capabilities to precisely design and create highly complex 3D disclination networks promise intriguing applications in stimuli‐responsive reconfigurable materials, directed self‐assembly of molecules, micro‐ and nanoparticles, and transport and sorting in microfluidic applications.more » « less
-
The standard model is applied for partial disclination pairs in hard materials. These defects comprise two partial disclinations and an intervening fault that can be a twin boundary, grain boundary or interphase boundary. In three dimensions there are six types. Two of them can be considered Somigliana disclinations. The standard model includes geometrically nonlinear embedded coordinates. It entails partitioning of displacements that result in configurations and strain fields not considered classically for partial disclinations. These concepts are applied to boundary junctions, disconnections, and multiple twins. Recovered stress-free structures are considered.more » « less
-
Topological line defects are ubiquitous in nature and appear at all physical scales, including in condensed matter systems, nuclear physics, and cosmology. Particularly useful systems to study line defects are nematic liquid crystals (LCs), where they describe singular or nonsingular frustrations in orientational order and are referred to as disclinations. In nematic LCs, line defects could be relatively simply created, manipulated, and observed. We consider cases where disclinations are stabilized either topologically in plane-parallel confinements or by chirality. In the former case, we report on studies in which defect core transformations are investigated, the intriguing dynamics of strength disclinations in LCs exhibiting negative dielectric anisotropy, and stabilization and manipulation of assemblies of defects. For the case of chiral nematics, we consider nanoparticle-driven stabilization of defect lattices. The resulting line defect assemblies could pave the way to several applications in photonics, sensitive detectors, and information storage devices. These excitations, moreover, have numerous analogs in other branches of physics. Studying their universal properties in nematics could deepen understanding of several phenomena, which are still unresolved at the fundamental level.more » « less
An official website of the United States government
