Northern forest soils are vital for climate change mitigation since upland sandy soils favor the net consumption/oxidation of atmospheric methane (CH4). We are studying biogeochemical CH4 cycle processes in a Northern Forest (Howland Research Forest, Maine), where upland soils are interspersed with wetland (Sphagnum bog), and upland-wetland transition soils along with hummock-hollow microtopography. This complex mosaic of microsites with sources and sinks of CH4 is subjected to change under future wet climates projected for this region, with a potential for these forests to shift from a net CH4 sink to a net CH4 source. Net CH4 emissions in a wet climate can increase either by inhibiting methanotrophs or favoring methanogens, or both. Thus, quantifying underlying processes of gross CH4 production and consumption can reduce the uncertainty of CH4 sink/source estimation in this critical ecosystem. We have collected baseline soil data across the forest's landscape including Total Carbon and Total Nitrogen with the Elemental Analyzer, Gravimetric Soil Moisture, and pH. Furthermore, stable isotope dilution method will serve as a proxy for methanogenic and methanotrophic activities to quantify gross rates of CH4 production and consumption from a flooding (wet-up) experiment in Howland Forest. We will differentiate between CH4 consumption and production by measuring both the change in the amount of CH4 and the ratio between labeled and unlabeled CH4 in a closed system. We will analyze the stable C isotope in 13CH4 to determine gross rates of CH4 production and oxidation in situ and within laboratory incubations. The in situ stable isotope dilution technique will be compared with the gas push-pull method, to test the suitability of a simple, low cost method to quantify gross CH4 oxidation rates. Novel data obtained in this study will constrain CH4 cycle processes in a biogeochemical model to quantify CH4 source-sink potential in Northern Forests under current and future climatic conditions.
more »
« less
Methane flux from living tree stems in a northern conifer forest
Not AvailabMethane (CH4) is the second-largest contributor to human-induced climate change, with significant uncertainties in its terrestrial sources and sinks. Tree stems play crucial roles in forest ecosystem CH4 flux dynamics, yet much remains unknown regarding the environmental drivers of fluxes. We measured CH4 flux from three tree species (Picea rubens, Tsuga canadensis, Acer rubrum) along an upland-to-wetland gradient at Howland Research Forest, a net annual sink of CH4, in Maine USA. We measured fluxes every two weeks and at three heights from April to November 2024 to capture a range of environmental conditions. Tree species influenced CH4 flux more than any of the environmental variables considered. Among environmental variables, soil moisture was the most important driver of CH4 flux, and our models suggested a significant interaction between soil moisture and soil temperature, such that the effect of higher soil moisture was greater at warmer soil temperatures. We determined a “breakpoint” in soil moisture along the upland-to-wetland gradient at ~ 60% volumetric water content, above which CH4 flux rates increased dramatically. All stems measured were net CH4 sources throughout the sampling period, with rare, isolate measurements of minimal uptake. The magnitude of flux varied by species: red maple stems were the largest emitters (1.946 ± 5.917 nmol m−2 s−1, mean ± SD), followed by red spruce (0.031 ± 0.065) and eastern hemlock (0.016 ± 0.027). This study highlights the contribution of these species to ecosystem CH4 fluxes. Our results establish the sensitivity of stem flux rates to projected increases in regional precipitation and temperature, potentially shifting the site from a net CH4 sink to a source.le
more »
« less
- PAR ID:
- 10645727
- Publisher / Repository:
- Biogeochemistry
- Date Published:
- Journal Name:
- Biogeochemistry
- Volume:
- 168
- Issue:
- 4
- ISSN:
- 1573-515X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Yukon-Kuskokwim Delta in western Alaska is one of the world’s largest high latitude wetland ecosystems, and the low topographic relief of this region makes it especially vulnerable to increased flooding and saltwater intrusion. To investigate the effects of changing moisture and salinity on carbon dioxide (CO2) and methane (CH4) fluxes from this landscape, an 11-week incubation experiment was conducted on soil from three different plant communities with differing tidal inundation frequencies: a lowland wetland that experiences tidal inundation multiple times per year, an upland wetland that experiences tidal inundation infrequently, and an upland tundra community that only inundates during large storm events. Soil mesocosms from each community were exposed to a factorial combination of one of three moisture levels (40%, 70%, or 100% saturation) at one of four salinity levels (freshwater, 3, 6, or 12 parts per thousand (ppt)). CO2 and CH4 concentrations were sampled weekly and fluxes for each mesocosm.more » « less
-
WetCH 4 : a machine-learning-based upscaling of methane fluxes of northern wetlands during 2016–2022Abstract. Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands (>45° N), accounting for 42 % of global wetland area, are increasingly vulnerable to carbon loss, especially as CH4 emissions may accelerate under intensified high-latitude warming. However, the magnitude and spatial patterns of high-latitude CH4 emissions remain relatively uncertain. Here, we present estimates of daily CH4 fluxes obtained using a new machine learning-based wetland CH4 upscaling framework (WetCH4) that combines the most complete database of eddy-covariance (EC) observations available to date with satellite remote-sensing-informed observations of environmental conditions at 10 km resolution. The most important predictor variables included near-surface soil temperatures (top 40 cm), vegetation spectral reflectance, and soil moisture. Our results, modeled from 138 site years across 26 sites, had relatively strong predictive skill, with a mean R2 of 0.51 and 0.70 and a mean absolute error (MAE) of 30 and 27 nmol m−2 s−1 for daily and monthly fluxes, respectively. Based on the model results, we estimated an annual average of 22.8±2.4 Tg CH4 yr−1 for the northern wetland region (2016–2022), and total budgets ranged from 15.7 to 51.6 Tg CH4 yr−1, depending on wetland map extents. Although 88 % of the estimated CH4 budget occurred during the May–October period, a considerable amount (2.6±0.3 Tg CH4) occurred during winter. Regionally, the Western Siberian wetlands accounted for a majority (51 %) of the interannual variation in domain CH4 emissions. Overall, our results provide valuable new high-spatiotemporal-resolution information on the wetland emissions in the high-latitude carbon cycle. However, many key uncertainties remain, including those driven by wetland extent maps and soil moisture products and the incomplete spatial and temporal representativeness in the existing CH4 flux database; e.g., only 23 % of the sites operate outside of summer months, and flux towers do not exist or are greatly limited in many wetland regions. These uncertainties will need to be addressed by the science community to remove the bottlenecks currently limiting progress in CH4 detection and monitoring. The dataset can be found at https://doi.org/10.5281/zenodo.10802153 (Ying et al., 2024).more » « less
-
Sea level rise and intensifying storms cause salinization and freshwater inundation of coastal forest soils which can result in tree mortality and altered ecosystem carbon (C) cycling. However, it is not yet clear if increased salinity and inundation will affect greenhouse gas (GHG) emissions to feed back with climate change. To assess the impacts of in situ chronic and pulsed salinity on GHG fluxes from coastal forests, we made continuous measurements of carbon dioxide and methane fluxes from intact soil cores collected in 1) an upland forest dominated by loblolly pine (Pinus taeda) and a freshwater swamp dominated by baldcypress (Taxodium distichum) 2) adjacent forest stands within forest types experiencing high versus low salinization and associated tree mortality and 3) before and after pulsed salinity from a hurricane related storm surge. In lab mesocosms, all soil cores were exposed to three levels of rainwater addition to assess potential interactive effects between salinization and inundation. We found that chronic salinization and associated tree mortality decreased soil CO2 fluxes in loblolly, but not baldcypress forest with in situ soil inundation patterns potentially driving the site effect. Additionally, in an upland loblolly forest, pulsed salinity from a storm surge exhibited the potential to increase CH4 fluxes. Finally, the effect of rainwater inundation on CH4 fluxes was greater in low compared to high salinity stands suggesting that salinization may have suppressed the effects of rainwater inundation on CH4 fluxes. Overall, we show that complex interactions between biotic and abiotic conditions in stressed coastal forests can alter GHG emissions, highlighting a need for future research focused on understanding the mechanisms driving GHG fluxes from coastal forests under changing environmental conditions.more » « less
-
Abstract Accurate quantification of soil carbon fluxes is essential to reduce uncertainty in estimates of the terrestrial carbon sink. However, these fluxes vary over time and across ecosystem types and so, it can be difficult to estimate them accurately across large scales. The flux‐gradient method estimates soil carbon fluxes using co‐located measurements of soil CO2concentration, soil temperature, soil moisture and other soil properties. The National Ecological Observatory Network (NEON) provides such data across 20 ecoclimatic domains spanning the continental U.S., Puerto Rico, Alaska and Hawai‘i.We present an R software package (neonSoilFlux) that acquires soil environmental data to compute half‐hourly soil carbon fluxes for each soil replicate plot at a given terrestrial NEON site. To assess the computed fluxes, we visited six focal NEON sites and measured soil carbon fluxes using a closed‐dynamic chamber approach.Outputs from theneonSoilFluxshowed agreement with measured fluxes (R2between measured andneonSoilFluxoutputs ranging from 0.12 to 0.77 depending on calculation method used); measured outputs generally fell within the range of calculated uncertainties from the gradient method. Calculated fluxes fromneonSoilFluxaggregated to the daily scale exhibited expected site‐specific seasonal patterns.While the flux‐gradient method is broadly effective, its accuracy is highly sensitive to site‐specific inputs, including the extent to which gap‐filing techniques are used to interpolate missing sensor data and to estimates of soil diffusivity and moisture content. Future refinement and validation ofneonSoilFluxoutputs can contribute to existing databases of soil carbon flux measurements, providing near real‐time estimates of a critical component of the terrestrial carbon cycle.more » « less
An official website of the United States government

