This dataset is comprised of processed and edited temperature and salinity profiles from the OOI (Ocean Observatories Initiative) Global Irminger Sea Array Apex profiler mooring from September 2014 to May 2020 (https://oceanobservatories.org/array/global-irminger-sea-array/). The original dataset (including physical units) is available at https://ooinet.oceanobservatories.org/data_access/?search=GI02HYPM-WFP02-00-WFPENG000. Methods: Vertical profile data were gridded using 5 m depth intervals taking the mean of upward and downward profiles. Salinity spikes were removed using a threshold of 0.01 over 5 m. Any salinity bins fresher than 34.72 were then removed. Salinity biases were corrected by referencing to a potential temperature of 2.5C, which was the deepest, most consistently sampled potential temperature of the dataset (Toole et al. 2017). The reference salinity at the reference isotherm was chosen to be 34.93 based on calibrated shipboard CTD measurements taken near the mooring on the OOI mooring service cruises from 2014 to 2019 (dataset references below). Salinity was calibrated by first subtracting the reference salinity from the raw value at the reference isotherm and then finding the ratio between this difference and the reference salinity. This gain correction was then multiplied by the full profile to produce the final salinity. The salinity is anchored to the reference salinity at the deep reference isotherm and this dataset should be used knowing that this is not necessarily realistic in this area of deep water mass formation. Caution should be used looking at properties near the reference isotherm. However, the salinity biases in the raw data are significant and without correction this time series is discontinuous whenever the mooring is replaced. The patterns in the upper part of the water column agree with nearby measurements (de Jong et al., 2023). Final Data: All data are included in a single NetCDF file, ‘OOI_Irm_HYPM_cal_21Mar2021_NCEIannotated_15Nov2023.nc’. The included fields are: time [days since 2000-01-01], depth [meters], practical salinity ‘sal’ [psu], in-situ temperature ‘temp’ [C], latitude [degrees north], and longitude [degrees east]. The Gibbs Seawater oceanographic toolbox (McDougall et al., 2011) was used to calculate all variables.
more »
« less
Bacterial MAGs from Corals
Bacterial Metagenome Assembled Genomes (bMAGs) from stony coral metagenomes. Bins from MaxBin2 v2.2.7 (Wu et al., 2015), MetaBat2 v2.15 (Kang et al., 2019), and CONCOCT v1.1.0 (Alneberg et al., 2014) were consolidated and improved with the metaWRAP v1.2.1 (Uritskiy et al., 2018). Bins were then quality filtered to ≥50% completion and ≤10% contamination with CheckM2 v1.0.2 (Chklovski et al., 2023). This dataset has been dereplicated using fastANI (--similarity-threshold 0.95).
more »
« less
- Award ID(s):
- 2424579
- PAR ID:
- 10646029
- Publisher / Repository:
- figshare
- Date Published:
- Subject(s) / Keyword(s):
- Genomics and transcriptomics Sequence analysis
- Format(s):
- Medium: X Size: 81233471 Bytes
- Size(s):
- 81233471 Bytes
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Earliest snowmelt estimation dates calculated for the year 2003 are provided using sea ice brightness temperatures from AMSR-E (Cavalieri et al., 2014) and DMSP SSM/I-SSMIS (Meier et al., 2019), as well as simulated sea ice brightness temperatures from the CESM2 JRA-55 (Danabasoglu et al., 2020; Kobayashi et al., 2015; Tsujino et al., 2018), which were created using the Arctic Ocean Observation Operator (ARC3O; Burgard et al, 2020a,b). Scripts and README files are provided for preparing the model data to act as input to ARC3O.more » « less
-
{"Abstract":["This file contains simple stellar population (SSP) model spectra constructed from a version of the SDSS-IV MaNGA Stellar Library (MaStar; Yan et al. 2019, Abdurro'uf et al. 2022) that has been corrected for the effects of absorption in the CaII 3934, 3969 and NaI D 5891, 5897 transitions arising in the Milky Way's interstellar medium (ISM). These corrections are described in full in Rubin et al. (2025), and our approach to constructing these SSP models is described in Maraston et al. (2020) and Rubin et al. (2025). In brief, our models are calculated with the evolutionary population synthesis code of Maraston (2005), which is based on the fuel consumption theorem for the evaluation of the energetics of post-Main Sequence phases. We use the calibrated median values of the stellar parameters calculated for the MaStar sample to generate representative stellar spectra as functions of effective temperature, surface gravity, and chemical composition. These representative spectra are then used as input for the stellar population models. The stellar parameter estimates are described in R. Yan et al. (2025, in preparation) and at https://www.sdss4.org/dr17/mastar/mastar-stellar-parameters/. \n\nWe calculate SSPs using stars in metallicity bins centered at [Z/H] = -1.35, -0.33, 0.0, and +0.35 with an approximate bin width of 0.1 dex assuming a Salpeter IMF. The SSP ages span 3 Myr to 15 Gyr and are calculated at 51 gridpoints. For comparison, we also calculate the equivalent SSPs using the uncorrected MaStar spectra. The datamodel is described below.\n\nHDU1: 51 x 4 x 1 x 3 matrix describing the parameters of each SSP spectrum. Each gridpoint (i,j,k) contains a 3-element array listing the age (in Gyr), metallicity, and IMF slope (in linear mass units)\n\nHDU2: 2 x 4563 array containing the vacuum wavelength and spectral resolution (R) grids for models constructed from the uncorrected (original) stellar library. The wavelength sampling is logarithmic and the wavelengths have units of Angstroms. R = wave / (FWHM dwave)\n\nHDU3: 51 x 4 x 1 x 4563 matrix containing the SSPs constructed from the uncorrected (original) stellar library in units of erg/s/Ang/Msun \n\nHDU4: 2 x 4542 array containing the vacuum wavelength and spectral resolution (R) grids for models constructed from the corrected (cleaned) stellar library. The wavelength sampling is logarithmic and the wavelengths have units of Angstroms. R = wave / (FWHM dwave)\n\nHDU5: 51 x 4 x 1 x 4542 matrix containing the SSPs constructed from the corrected (cleaned) stellar library in units of erg/s/Ang/Msun "],"Other":["Preferred Citation\n\nIf you use these model spectra in your research, we ask that you please cite our article, "Sloan Digital Sky Survey IV MaStar: Quantification and Abatement of Interstellar Absorption in the Largest Empirical Stellar Spectral Library," Rubin et al. (2025), ApJ, 981 31, doi:10.3847/1538-4357/ad8eb6. Please also cite this Zenodo deposit."]}more » « less
-
This data set contains measurements of carbon dioxide (CO2) amount fractions in gas bubbles from the WAIS Divide ice core WD06. All measurements were made in the Ice Core Laboratory at Oregon State University in Corvallis, Oregon USA. The data set includes the replicate-mean values and measurement precision (1 sigma standard error) from all CO2 measurements published in Wendt et al. (2024) PNAS. Bauska et al. (2021) Nature Geoscience, and Marcott et al. (2014) Nature. See respective publications for details. Ages listed in years before 1950 AD on the WD2014 timescale (see Buizert et al., 2015 and Sigl et al., 2014 for chronology details).more » « less
-
The principal aim at Site U1589 (proposed Site CSK-01A) was to reconstruct the evolution of the Anhydros Basin, including its history of subsidence, as well as to document the presence of volcanic event layers in the basin sediments and draw conclusions regarding the links between volcanism and crustal tectonics. The site is located about 10 km southwest of Amorgos Island at 484 meters below sea level (mbsl) (Figure F1). The drill site targeted the volcano-sedimentary fill of the Anhydros Basin. We received permission from the International Ocean Discovery Program (IODP) Environmental Protection and Safety Panel to touch the Alpine basement using an advanced piston corer/extended core barrel/rotary core barrel (APC/XCB/RCB) drilling strategy. The site involved three holes (U1589A–U1589C) and terminated in basement limestone at 612.4 meters below seafloor (mbsf) (all depths below seafloor are given using the core depth below seafloor, Method A [CSF-A] scale, except in Operations, where the drilling depth below seafloor [DSF] scale is used). Core recovery was good in Holes U1589A (78%) and U1589B (87%) and poor in Hole U1589C (24%). Site U1589 was chosen to sample the eruptive histories of both Santorini and the Kolumbo chain and was expected to yield volcaniclastics from many Kolumbo eruptions and the major Santorini eruptions. Many deposits from smaller Santorini eruptions were not expected at this distance from the volcano, in part due to flow blocking by the Kolumbo volcanic chain. Santorini has been active since 0.65 Ma, with many large explosive eruptions since about 0.36 Ma (Druitt et al., 2016). Kolumbo Volcano was known from seismic profiles to have had at least five eruptions (Hübscher et al., 2015), the last of which was in 1650 Common Era (CE) and killed 70 people on Santorini (Fuller et al., 2018). Seismic profiles provided constraints on the relative ages of the Kolumbo cones (Preine et al., 2022c) but not on the absolute ages. The site offered a near-continuous time series of volcanism in the area since rift inception. The site was also chosen to develop a core-log-seismic integration stratigraphy and compare it with the recently published seismic stratigraphy for the basin (Preine et al., 2022a) and the paleotectonic reconstruction of the region (Nomikou et al., 2016, 2018) to promote a holistic view of the Anhydros Basin evolution (Figure F2). The site transects all six seismic packages of the Anhydros rift basin, as well as the onlap surfaces between them (Nomikou et al., 2016, 2018; Preine et al., 2022a). The anticipated lithologies were undisturbed hemipelagic muds, volcaniclastics, turbidites, and finally continental basement rocks. A gravity core recovered 7 km to the east indicated that the uppermost sediments on site would consist of hemipelagic muds and volcaniclastic layers, as well as sapropels (Kutterolf et al., 2021). The Anhydros Basin is crossed by many seismic profiles obtained in campaigns between 2006 and 2019, many of them multichannel (Hübscher et al., 2015; Nomikou et al., 2016, 2018), and its southwestern part is included within the area of the 2015 PROTEUS seismic tomography experiment, during which subbottom profiling, gravity, and magnetic data were also recorded (Hooft et al., 2017). The basin bathymetry had been studied in several marine campaigns, and fault distributions and throws had been mapped (Nomikou et al., 2016; Hooft et al., 2017). Previously published analyses of the seismic data suggested the following possible interpretations (from the bottom up; Preine et al., 2022b, 2022c): Units U1 and U2: sediment packages predating Santorini and Kolumbo volcanism; Unit U3: sediments and the products of the early Kolumbo volcanism and some of the Kolumbo cones; Unit U4: sediments associated with a major rift pulse; and Units U5 and U6: sediments and the products of Santorini activity, some of the Kolumbo cones, and the later eruptions of Kolumbo including the 1650 CE eruption. Units U3–U6 were believed to be of Pleistocene age, and Units U1 and U2 were believed to be of possible Pliocene age. The site enabled us to test these interpretations by using the cores to reconstruct a near-complete volcanic stratigraphy consistent with both onshore and offshore constraints and pinned by chronological markers from biostratigraphy, magnetostratigraphy, and sapropel records. Benthic foraminifera from fine-grained sediments provided estimates of paleowater depths and, via integration with seismic profiles and chronologic data, of time-integrated basin subsidence rates. Coring at Site U1589 in the Anhydros Basin addressed scientific Objectives 1–4 and 6 of the Expedition 398 Scientific Prospectus (Druitt et al., 2022). It was complemented by Site U1592 in the Anafi Basin because each basin taps a different sediment distributary branch of the Christiana-Santorini-Kolumbo volcanic system.more » « less
An official website of the United States government
