skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of quorum sensing decision states in heterogeneous bacterial communities
Abstract Bacteria utilize cell-cell signaling to coordinate gene expression in populations of cells. Bacterial signal exchange was originally interpreted as a mechanism bacteria use to regulate gene expression in response to changes in cell density, denoted as quorum sensing. Bacterial communication is now known to encompass the exchange of multiple chemical signals between different species of bacteria. Such signal crosstalk within communities of bacteria can have unexpected consequences. Some bacterial species even utilize more than one orthogonal signaling molecule, enabling such species to simultaneously communicate within distinct subsets of species. Such cells utilizing two sets of signals act as a bridge to link gene expression states within the community. Here, a mathematical model was implemented to investigate the consequences of multi-signal communication within heterogeneous bacterial communities. The model was inspired by simple neural networks, with nodes representing bacterial species and directed weights between nodes accounting for the impacts of inter-species signal exchange on gene expression. The activity state of such a network is defined as the gene expression state of each species within the community. Using the model, the stability of the activity states of such networks to changes in signal concentration and population size were quantified. Networks exchanging one set of signals were compared to network exchanging two orthogonal sets of signals. A multilayer neural network model was developed to analyze such networks exchanging orthogonal sets of signals. The model reveals that signal crosstalk increased the activity of the network. These networks were largely resilient to perturbation, however networks were more sensitive to perturbations of the largest population size. Bacterial species utilizing two orthogonal signals, within multilayer networks, had the potential to couple activity states of species that cannot directly communicate. These results give insight into strategies for manipulating signal exchange to predict and control gene expression within bacterial communities.  more » « less
Award ID(s):
2414158
PAR ID:
10646167
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Physical Biology
ISSN:
1478-3967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fu, Feng (Ed.)
    With the recent availability of tissue-specific gene expression data, e.g., provided by the GTEx Consortium, there is interest in comparing gene co-expression patterns across tissues. One promising approach to this problem is to use a multilayer network analysis framework and perform multilayer community detection. Communities in gene co-expression networks reveal groups of genes similarly expressed across individuals, potentially involved in related biological processes responding to specific environmental stimuli or sharing common regulatory variations. We construct a multilayer network in which each of the four layers is an exocrine gland tissue-specific gene co-expression network. We develop methods for multilayer community detection with correlation matrix input and an appropriate null model. Our correlation matrix input method identifies five groups of genes that are similarly co-expressed in multiple tissues (a community that spans multiple layers, which we call a generalist community) and two groups of genes that are co-expressed in just one tissue (a community that lies primarily within just one layer, which we call a specialist community). We further found gene co-expression communities where the genes physically cluster across the genome significantly more than expected by chance (on chromosomes 1 and 11). This clustering hints at underlying regulatory elements determining similar expression patterns across individuals and cell types. We suggest thatKRTAP3-1,KRTAP3-3, andKRTAP3-5share regulatory elements in skin and pancreas. Furthermore, we find thatCELA3AandCELA3Bshare associated expression quantitative trait loci in the pancreas. The results indicate that our multilayer community detection method for correlation matrix input extracts biologically interesting communities of genes. 
    more » « less
  2. Quorum sensing is a widespread process in bacteria that controls collective behaviours in response to cell density. Populations of cells coordinate gene expression through the perception of self-produced chemical signals. Although this process is well-characterized genetically and biochemically, quantitative information about network properties, including induction dynamics and steady-state behaviour, is scarce. Here we integrate experiments with mathematical modelling to quantitatively analyse the LasI/LasR quorum sensing pathway in the opportunistic pathogen Pseudomonas aeruginosa . We determine key kinetic parameters of the pathway and, using the parametrized model, show that quorum sensing behaves as a bistable hysteretic switch, with stable on and off states. We investigate the significance of feedback architecture and find that positive feedback on signal production is critical for induction dynamics and bistability, whereas positive feedback on receptor expression and negative feedback on signal production play a minor role. Taken together, our data-based modelling approach reveals fundamental and emergent properties of a bacterial quorum sensing circuit, and provides evidence that native quorum sensing can indeed function as the gene expression switch it is commonly perceived to be. 
    more » « less
  3. Abstract Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits. 
    more » « less
  4. StarvingMyxococcus xanthusbacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that “transitioning cells” (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal–dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development. 
    more » « less
  5. Networks (or graphs) are used to model the dyadic relations between entities in complex systems. Analyzing the properties of the networks reveal important characteristics of the underlying system. However, in many disciplines, including social sciences, bioinformatics, and technological systems, multiple relations exist between entities. In such cases, a simple graph is not sufficient to model these multiple relations, and a multilayer network is a more appropriate model. In this paper, we explore community detection in multilayer networks. Specifically, we propose a novel network decoupling strategy for efficiently combining the communities in the different layers using the Boolean primitives AND, OR, and NOT. Our proposed method, network decoupling, is based on analyzing the communities in each network layer individually and then aggregating the analysis results. We (i) describe our network decoupling algorithms for finding communities, (ii) present how network decoupling can be used to express different types of communities in multilayer networks, and (iii) demonstrate the effectiveness of using network decoupling for detecting communities in real-world and synthetic data sets. Compared to other algorithms for detecting communities in multilayer networks, our proposed network decoupling method requires significantly lower computation time while producing results of high accuracy. Based on these results, we anticipate that our proposed network decoupling technique will enable a more detailed analysis of multilayer networks in an efficient manner. 
    more » « less