skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 17, 2026

Title: AI-Driven Digital Twin Framework for Predictive Maintenance: Dynamic Decision Making and Adaptive Model Updates
Abstract Predictive maintenance in truck fleet management is essential to reduce downtime and maintenance costs, yet traditional approaches often rely on static, rule-based schedules that fail to capture real-time operational variability. In this paper, we propose a robust digital twin (DT) framework for predictive maintenance specifically designed for tire predictive maintenance that integrates real-time tire health data, dynamic decision-making, and adaptive model updates to optimize tire resource allocation and enhance system health. Our framework is unique in its ability to incorporate uncertainty-aware dynamic programming, drift detection, and adaptive surrogate model updates within the digital twin. Specifically, we develop an uncertainty-aware dynamic linear programming (U-DLP) approach to optimize tire placement and servicing schedules based on continuously updated tire health data through surrogate model. To ensure DT reliability, we employ the maximum concept discrepancy (MCD) method to detect drift by identifying discrepancies between predicted and actual tire performance, thereby flagging data for necessary tire health model updates. Subsequently, we introduce an uncertainty-aware low-rank adaptation (U-LORA) method to efficiently update the tire health model by dynamically refining the surrogate model based on measured uncertainty. Simulation results indicate that our framework extends tire lifespan by nearly 50% compared to conventional methods, requiring fewer tires to achieve the same operational mileage, while also reducing tire waste and maintenance costs. This integrated digital twin framework offers a reliable and efficient solution for tire predictive maintenance, enhancing fleet sustainability and operational efficiency.  more » « less
Award ID(s):
2133630
PAR ID:
10646227
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a novel digital twin framework for predictive maintenance of physical systems with long term operations. Using monitoring tire health as an application, we show how the digital twin framework is used to enhance automotive safety and efficiency, while overcoming technical challenges using a three-step approach. Firstly, for managing the data complexity over a long operation span, we employ data reduction techniques to concisely represent physical tires using historical performance and usage data. Relying on this data, for fast real-time prediction, we train a transformer-based model offline on our concise dataset to predict future tire health over time, represented as Remaining Casing Potential (RCP). Based on our architecture, our model quantifies both epistemic and aleatoric uncertainty, providing reliable confidence intervals around predicted RCP. Secondly, we incorporate real-time data by updating the predictive model in the digital twin framework, ensuring its accuracy throughout its life span with the aid of hybrid modeling and the use of a discrepancy function. Thirdly, to assist decision making in predictive maintenance, we implement a Tire State Decision Algorithm, which strategically determines the optimal timing for tire replacement based on RCP forecasted by our transformer model. This three-step approach ensures that our digital twin not only accurately predicts the health of a system, but also continually refines its digital representation and makes predictive maintenance decisions for removal from service. Our proposed digital twin framework embodies a physical system accurately and leverages big data and machine learning for predictive maintenance, model update and decision making. 
    more » « less
  2. This work presents an integrated architecture for a prognostic digital twin for smart manufacturing subsystems. The specific case of cutting tool wear (flank wear) in a CNC machine is considered, using benchmark data sets provided by the Prognostics and Health Management (PHM) Society. This paper emphasizes the role of robust uncertainty quantification, especially in the presence of data-driven black- and gray-box dynamic models. A surrogate dynamic model is constructed to track the evolution of flank wear using a reduced set of features extracted from multi-modal sensor time series data. The digital twin's uncertainty quantification engine integrates with this dynamic model along with a machine emulator that is tasked with generating future operating scenarios for the machine. The surrogate dynamic model and emulator are combined in a closed-loop architecture with an adaptive Monte Carlo uncertainty forecasting framework that allows prediction of quantities of interest critical to prognostics within user-prescribed bounds. Numerical results using the PHM dataset are shown illustrating how the adaptive uncertainty forecasting tools deliver a trustworthy forecast by maintaining predictive error within the prescribed tolerance. 
    more » « less
  3. Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)
    In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings. 
    more » « less
  4. Rapid advances in Digital Twin (DT) provide an unprecedented opportunity to derive data-enabled intelligence for smart manufacturing. However, traditional DT is more concerned about real-time data streaming, dashboard visualization, and predictive analytics, but focuses less on multi-agent intelligence. This limitation hampers the development of agentic intelligence for decentralized decision making in complex manufacturing environments. Therefore, this paper presents a Cognitive Digital Twin (CDT) approach for multi-objective production scheduling through decentralized, collaborative multi-agent learning. First, we propose to construct models of heterogeneous agents (e.g., machines, jobs, automated guided vehicles, and automated storage and retrieval systems) that interact with physical and digital twins. Second, multi-objective optimization is embedded in CDT to align production schedules with diverse and often conflicting objectives such as throughput, task transition efficiency, and workload balance. Third, we develop a multi-agent learning approach to enable decentralized decision making in response to unexpected disruptions and dynamic demands. Each agent operates independently and collaboratively with cognitive capabilities, including perception, learning, and reasoning, to optimize the individual agentic objective while contributing to overarching system-wide goals. Finally, the proposed CDT is evaluated and validated with experimental studies in a learning factory environment. Experimental results demonstrate that CDT improves operational performance in terms of task allocation, resource utilization, and system resilience compared to traditional centralized approaches. This initial study of CDT highlights the potential to bring multi-agent cognitive intelligence into next-generation smart manufacturing. 
    more » « less
  5. Accurate prediction of repair durations is a challenge in product maintenance due to its implications for resource allocation, customer satisfaction, and operational performance. This study aims to develop a deep learning framework to help fleet repair shops accurately categorize repair time given product historical data. The study uses an automobile repair and maintenance dataset and creates an end-to-end predictive framework by employing a multi-head attention network designed for tabular data. The developed framework combines categorical information, transformed through embeddings and attention mechanisms, with numerical historical data to facilitate integration and learning from diverse data features. A weighted loss function is introduced to overcome class imbalance issues in large datasets. Moreover, an online learning strategy is used for continuous incremental model updates to maintain predictive accuracy in evolving operational environments. Our empirical findings demonstrate that the multi-head attention mechanism extracts meaningful interactions between vehicle identifiers and repair types compared to a feed-forward neural network. Also, combining historical maintenance data with an online learning strategy facilitates real-time adjustments to changing patterns and increases the model’s predictive performance on new data. The model is tested on real-world repair data spanning 2013 to 2020 and achieves an accuracy of 78%, with attention weight analyses illustrating feature interactions. 
    more » « less