Abstract. We investigate here the effects of geometric properties (channel depth andcross-sectional convergence length), storm surge characteristics, friction,and river flow on the spatial and temporal variability of compound floodingalong an idealized, meso-tidal coastal-plain estuary. An analytical model isdeveloped that includes exponentially convergent geometry, tidal forcing,constant river flow, and a representation of storm surge as a combination oftwo sinusoidal waves. Nonlinear bed friction is treated using Chebyshevpolynomials and trigonometric functions, and a multi-segment approach isused to increase accuracy. Model results show that river discharge increasesthe damping of surge amplitudes in an estuary, while increasing channeldepth has the opposite effect. Sensitivity studies indicate that the impactof river flow on peak water level decreases as channel depth increases,while the influence of tide and surge increases in the landward portion ofan estuary. Moreover, model results show less surge damping in deeperconfigurations and even amplification in some cases, while increasedconvergence length scale increases damping of surge waves with periods of 12–72 h. For every modeled scenario, there is a point where river dischargeeffects on water level outweigh tide/surge effects. As a channel isdeepened, this cross-over point moves progressively upstream. Thus, channeldeepening may alter flood risk spatially along an estuary and reduce thelength of a river estuary, within which fluvial flooding is dominant.
more »
« less
This content will become publicly available on December 1, 2026
Breaking down annual and tropical cyclone-induced nonlinear interactions in total water levels
With the increase of tropical cyclone activity, coastal communities will experience growing impacts from extreme water levels and associated compound flooding. Multiple drivers contribute to total water level (TWL), including mean sea level, astronomical tides, riverine flow, storm surges, and waves. Therefore, gaining insight into future TWL variability requires a thorough understanding of how those drivers nonlinearly interact at different spatiotemporal scales. In this study, we developed a coupled coastal and wave model at sufficient spatial resolution to analyze: (i) tide–driver interactions and their nonlinear components stemming from surge, river flow, and wind-waves, and (ii) their spatiotemporal evolution across the pre-landfall, landfall, and post-landfall stages of tropical cyclones in the Chesapeake Bay, USA. Results show that tide–surge and tide–wave interactions, along with their nonlinear components, exhibit substantial annual variability, with extreme hurricanes producing abrupt and spatially distinct responses driven by low pressure anomalies in slow-moving storms and wind setup in faster systems. In contrast, tide–river interactions remain negligible except in the upper bay tributaries. A weak or neutral tide–driver interaction does not necessarily indicate a negligible nonlinear response. Rather, nonlinear interactions (NIs) generally act out of phase with their associated drivers, functioning as compensatory mechanisms that amplify or suppress TWL. These nonlinearities are transient and of high-frequency nature near the coast, but evolve into slower, more persistent fluctuations in upstream regions. As climate change reshapes coastal dynamics, a robust understanding of NIs is essential for designing effective flood protection, enhancing risk assessments, and developing informed adaptation strategies for extreme water levels.
more »
« less
- Award ID(s):
- 2141461
- PAR ID:
- 10646574
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Advances in water resources
- ISSN:
- 0309-1708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tide-surge interaction creates perturbations to storm surge at tidal frequencies and can affect the timing and magnitude of surge in tidally energetic regions. To date, limited research has identified high frequency tide-surge interaction (> 4 cycles per day) in coastal areas, and its significance in fluvial estuaries (where we consider it tide-surge-river interaction) is not well documented. Water level and current velocity observations were used to analyze tide-surge-river interaction at multiple tidal and overtide frequencies inside of a shallow estuary. Near the head of the estuary, higher frequency harmonics dominate tide-surge-river interaction and produce amplitudes more than double that of wind and pressure-driven surge. Bottom friction enhanced by storm-induced currents is the primary mechanism behind the interaction, which is further amplified by within-estuary resonance. High frequency tide-surge-river interactions in estuaries present a significant threat to human life, as the onset of flooding (in < 1.5 hrs.) is more rapid than coastal storm surge flooding. Commonly used storm surge forecasting models neglect high frequency tide-surge-river interaction and thus can markedly underestimate the magnitude and timing of inland storm surge flooding.more » « less
-
Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences.more » « less
-
Two sessions were organized during the 2018 Fall AGU Meeting entitled, (1) Coastal Response to Extreme Events: Fidelity of Model Predictions of Surge, Inundation, and Morphodynamics and (2) Improved Observational and Modeling Skills to Understand the Hurricane and Winter Storm Induced Surge and Meteotsunami. The focus of these sessions was on examining the impact of natural disasters on estuarine and coastal regions worldwide, including the islands and mainland in the northwestern Atlantic and the northwestern Pacific. The key research interests are the investigations on the regional dynamics of storm surges, coastal inundations, waves, tides, currents, sea surface temperatures, storm inundations and coastal morphology using both numerical models and observations during tropical and extratropical cyclones. This Special Issue (SI) ‘Estuarine and coastal natural hazards’ in Estuarine Coastal and Shelf Science is an outcome of the talks presented at these two sessions. Five themes are considered (effects of storms of wave dynamics; tide and storm surge simulations; wave-current interaction during typhoons; wave effects on storm surges and hydrodynamics; hydrodynamic and morphodynamic responses to typhoons), arguably reflecting areas of greatest interest to researchers and policy makers. This synopsis of the articles published in the SI allows us to obtain a better understanding of the dynamics of natural hazards (e.g., storm surges, extreme waves, and storm induced inundation) from various physical aspects. The discussion in the SI explores future dimensions to comprehend numerical models with fully coupled windwave- current-morphology interactions at high spatial resolutions in the nearshore and surf zone during extreme wind events. In addition, it would be worthwhile to design numerical models incorporating climate change projections (sea level rise and global warming temperatures) for storm surges and coastal inundations to allow more precisely informed coastal zone management plans.more » « less
-
Abstract. Flooding is of particular concern in low-lying coastal zones that are prone to flooding impacts from multiple drivers, such as oceanographic (storm surge and wave), fluvial (excessive river discharge), and/or pluvial (surface runoff). In this study, we analyse, for the first time, the compound flooding potential along the contiguous United States (CONUS) coastline from all flooding drivers, using observations and reanalysis data sets. We assess the overall dependence from observations by using Kendall's rank correlation coefficient (τ) and tail (extremal) dependence (χ). Geographically, we find the highest dependence between different drivers at locations in the Gulf of Mexico, southeastern, and southwestern coasts. Regarding different driver combinations, the highest dependence exists between surge–waves, followed by surge–precipitation, surge–discharge, waves–precipitation, and waves–discharge. We also perform a seasonal dependence analysis (tropical vs. extra-tropical season), where we find higher dependence between drivers during the tropical season along the Gulf and parts of the East Coast and stronger dependence during the extra-tropical season on the West Coast. Finally, we compare the dependence structure of different combinations of flooding drivers, using observations and reanalysis data, and use the Kullback–Leibler (KL) divergence to assess significance in the differences of the tail dependence structure. We find, for example, that models underestimate the tail dependence between surge–discharge on the East and West coasts and overestimate tail dependence between surge–precipitation on the East Coast, while they underestimate it on the West Coast. The comprehensive analysis presented here provides new insights on where the compound flooding potential is relatively higher, which variable combinations are most likely to lead to compounding effects, duringwhich time of the year (tropical versus extra-tropical season) compoundflooding is more likely to occur, and how well reanalysis data capture thedependence structure between the different flooding drivers.more » « less
An official website of the United States government
