skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discovery and Functional Characterization of SnFDHal, an Efficient Tryptophan 5-Halogenase from Streptomyces noursei
Abstract Flavin-dependent halogenases (FDHs) are a class of enzymes renowned for their regioselective ability to precisely insert halogen atoms into small aromatic compounds. Halogen incorporation can enhance the physicochemical and biological properties of molecules, making them valuable for agrochemical and pharmaceutical applications. Through bioinformatic mining of bacterial genomes, we discovered and functionally characterized SnFDHal, an efficient tryptophan 5-halogenase fromStreptomyces nourseiNRRL B-1714. This halogenase operates across a broad pH range and exhibits a melting temperature of 46.7 °C at both pH 6 and pH 8, which is comparable to thermophilic halogenases such as Th-Hal and BorH, and notably higher than those of mesophilic counterparts. Steady-state kinetic analysis revealed that SnFDHal displays superior catalytic efficiency for the chlorination of L-tryptophan compared to other FDHs reported to date. Structural modeling of its active site suggests that a conserved bulky phenylalanine residue (F49) promotes halogenation at the C-5 position of L-tryptophan, consistent with experimental findings. The combination of high catalytic efficiency and thermostability positions SnFDHal as a promising biocatalyst for applications in agrochemical and pharmaceutical industries.  more » « less
Award ID(s):
2044558
PAR ID:
10646627
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Applied Biochemistry and Biotechnology
ISSN:
0273-2289
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Oxalate decarboxylase fromBacillus subtilisis a binuclear Mn‐dependent acid stress response enzyme that converts the mono‐anion of oxalic acid into formate and carbon dioxide in a redox neutral unimolecular disproportionation reaction. A π‐stacked tryptophan dimer, W96 and W274, at the interface between two monomer subunits facilitates long‐range electron transfer between the two Mn ions and plays an important role in the catalytic mechanism. Substitution of W96 with the unnatural amino acid 5‐hydroxytryptophan leads to a persistent EPR signal which can be traced back to the neutral radical of 5‐hydroxytryptophan with its hydroxyl proton removed. 5‐Hydroxytryptophan acts as a hole sink preventing the formation of Mn(III) at the N‐terminal active site and strongly suppresses enzymatic activity. The lower boundary of the standard reduction potential for the active site Mn(II)/Mn(III) couple can therefore be estimated as 740 mV against the normal hydrogen electrode at pH 4, the pH of maximum catalytic efficiency. Our results support the catalytic importance of long‐range electron transfer in oxalate decarboxylase while at the same time highlighting the utility of unnatural amino acid incorporation and specifically the use of 5‐hydroxytryptophan as an energetic sink for hole hopping to probe electron transfer in redox proteins. 
    more » « less
  2. Abstract Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain‐extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn−Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain‐extend from a less active poly(n‐butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1mNaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2‐bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers. 
    more » « less
  3. Abstract Synthetic chiral platforms can be a powerful platform for enantioselective interactions, especially when coupled with redox‐mediated electrochemical processes. While metallopolymers are versatile platforms for molecularly selective binding, their application for chiral applications is limited. In particular, the recognition and separation of biologically relevant chiral molecules can be key for biomanufacturing and diagnostics. Here, the design of chiral redox‐polymers enables electrochemically‐controlled enantioselective interactions, and supramolecular chirality is leveraged for enhancing recognition towards target enantiomers. Chiral redox‐metallopolymers are synthesized based on Ugi's amine‐inspired chiral monomers, and their enantioselective recognition toward ionic enantiomers such as tryptophan and naproxen is demonstrated, with higher enanhcement provided by the chiral redox‐polymer over the single‐site, chiral building bloack itelf. 2D nuclear magnetic resonance spectroscopy and solid‐state circular dichroism support the emergence of supramolecular chirality resulting from the intramolecular interaction between the ferrocene and the alkyl group in the backbone. The half potential shift of the redox‐polymers behaves linearly from 0% to 100%eel‐tryptophan to enable enantiomer quantification. Investigation on solvent polarity and pH effect reveal that the enantioselective mechanism is attributed to the subtle balance between hydrogen bonding and π–π interaction. This study highlights the potential of chiral redox‐metallopolymers as platforms for electrochemically‐modulated enantioselective interactions towards a range of amino acids and pharmaceutical carboxylates. 
    more » « less
  4. Abstract This study presents the development of an innovative nanofibrous membrane to remove microplastics (MPs) from drinking water. This membrane exhibits additional functionality in removing lead (Pb), highlighting its promising potential for utilization as a point‐of‐use (POU) device. The polyvinyl alcohol (PVA) nanofibrous membranes are crosslinked using glutaraldehyde, and their efficiencies in the removal of MPs are evaluated. The results show that crosslinking the 7 and 10 wt% PVA nanofibers increases their average diameters to 330 and 581 nm, respectively, and enhances their surface area. The treatment efficiency of crosslinked PVA fibrous media is evaluated using polyethylene (PE) (5 μm ≤d ≤ 25 μm) and polystyrene (PS) MPs (d ≤ 1 μm). The filtration efficiencies of both 7 and 10 wt% c‐PVA nanofibrous media are found to be 99.8% ± 0.1% in the removal of PE MPs at pH 8. Further examination of the filtration efficiency in the removal of PS MPs shows that the highest removal efficiency achieved was 77.3% ± 1.4% at a pH of 6. Additionally, the lead removal efficiency of this fibrous membrane in flow‐through experiments is examined. Results show a pH‐dependent lead removal efficiency, in which the greatest efficiency of 69% is found at pH 6. 
    more » « less
  5. null (Ed.)
    Covering: Up to December 2020 Enzymatic halogenation reactions are essential for the production of thousands of halogenated natural products. However, in recent years, scientists discovered several halogenases that transiently incorporate halogen atoms in intermediate biosynthetic molecules to activate them for further chemical reactions such as cyclopropanation, terminal alkyne formation, C-/O-alkylation, biaryl coupling, and C–C rearrangements. In each case, the halogen atom is lost in the course of biosynthesis to the final product and is hence termed “cryptic”. In this review, we provide an overview of our current knowledge of cryptic halogenation reactions in natural product biosynthesis. 
    more » « less