We use branes to generalize the Distance Conjecture. We conjecture that in any infinite-distance limit in the moduli space of a d-dimensional quantum gravity theory, among the set of particle towers and fundamental branes with at most pmax spacetime dimensions (where pmax is an integer between 1 and d-2), at least one has mass/tension decreasing exponentially T ~ exp(–α ∆) with the moduli space distance ∆ at a rate of at least α ≥ 1/sqrt(d-pmax-1). Since pmax can vary, this represents multiple conditions, where the Sharpened Distance Conjecture is the pmax = 1 case. This conjecture is a necessary condition imposed on higher-dimensional theories in order for the Sharpened Distance Conjecture to hold in lower-dimensional theories. We test our conjecture in theories with maximal and half-maximal supersymmetry in diverse dimensions, finding that it is satisfied and often saturated. In some cases where it is saturated — most notably, heterotic string theory in 10 dimensions — we argue that novel, low-tension non-supersymmetric branes must exist. We also identify patterns relating the rates at which various brane tensions vary in infinite-distance limits and relate these tensions to the species scale.
more »
« less
This content will become publicly available on October 23, 2026
Taxonomy of branes in infinite distance limits
I consider flat slices of moduli spaces where the (–∇ log T)-vectors of particle-towers and branes are constant, and I show that the Emergent String Conjecture constrains these vectors to reside on lattices. In asymptotic limits, this results in exponentially separated, discretized hierarchies of energy scales. I further identify conditions that determine whether a given lattice site must be populated, and I show that only a finite set of configurations satisfies these conditions. I classify all such configurations for 0d, 1d, and 2d moduli spaces in theories with 3 to 11 spacetime dimensions, and I argue that 11d is the maximal spacetime dimension compatible with my assumptions. Remarkably, this classification reproduces the detailed particle and brane content of various string theory examples with 32, 16, and 8 supercharges. It also describes some examples where the assumptions I use are violated, suggesting that my assumptions can be relaxed and the scope of this classification can be expanded. It might also predict new branes. For instance, if heterotic string theory is described by this classification, then it must possess non-BPS branes with D-brane-like tensions. Similarly, if this classification applies to the Dark Dimension Scenario with an extra modulus, then it requires the existence of strings with tensions related to the cosmological constant by T ≲ Λ^(1/6) in 4d Planck units.
more »
« less
- PAR ID:
- 10646709
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 10
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Geodesics in moduli spaces of string vacua are important objects in string phenomenology. In this paper, we highlight a simple condition that connects brane tensions, including particle masses, with geodesics in moduli spaces. Namely, when a brane’s scalar charge-to-tension ratio vector −∇ log T has a fixed length, then the gradient flow induced by the logarithm of the brane’s tension is a geodesic. We show that this condition is satisfied in many examples in the string landscape.more » « less
-
The Emergent String Conjecture constrains the possible types of light towers in infinite-distance limits in quantum gravity moduli spaces. In this paper, we use these constraints to restrict the geometry of the scalar charge-to-mass vectors -∇ log m of the light towers and the analogous vector -∇ log Λ of the species scale. We derive taxonomic rules that these vectors must satisfy in each duality frame. Under certain assumptions, this allows us to classify the ways in which different duality frames can fit together globally in the moduli space in terms of a finite list of polytopes. Many of these polytopes arise in known string theory compactifications, while others suggest either undiscovered corners of the landscape or new swampland constraints.more » « less
-
A bstract In this paper we study the 6d localized charged matter spectrum of F-theory directly on a singular elliptic Calabi-Yau 3-fold, i.e. without smoothing via resolution or deformation of the entire fibration. Given only the base surface, discriminant locus, and the SL(2 , ℤ) local system, we propose a general prescription for determining the charged matter spectrum localized at intersections of seven-branes, using the technology of string junctions. More precisely, at each codimension-2 collision of seven-branes, we determine the local seven-brane content and compute the number of massless string junctions modulo the action of the SL(2 , ℤ) monodromy. We find agreement with the predicted results from 6d anomaly cancellation in all cases considered. Examples include a generic Weierstrass model with arbitrary Kodaira fiber intersecting an I 1 , as well as cases with jointly charged matter localized at intersections of non-abelian seven-branes.more » « less
-
A<sc>bstract</sc> The quantization of semiclassical strings in AdS spacetimes yields predictions for the strong-coupling behaviour of the scaling dimensions of the corresponding operators in the planar limit of the dual gauge theory. Finding non-planar corrections requires computing string loops (corresponding to torus and higher genus surfaces), which is a challenging task. It turns out that in the case of theUk(N) ×U−k(N) ABJM theory there is an alternative approach: one may semiclassically quantize M2 branes in AdS4×S7/ℤkwhich are wrapped around the 11d circle of radius 1/k=λ/N. Such M2 branes are the M-theory generalization of the strings in AdS × CP3. In this work, we show that by expanding in large M2 brane tensionT2~$$ \sqrt{kN} $$ for fixedk, followed by an expansion in largek, we can predict the largeλasymptotics of the non-planar corrections to the dimensions of the dual ABJM operators. As a specific example, we consider the M2 brane configuration that generalizes the long folded string with large spin in AdS4, and compute the 1-loop correction to its energy. This calculation allows us to determine non-planar corrections to the universal scaling function or cusp anomalous dimension. We extend our analysis to the semiclassical M2 branes that generalize the “short” and “long” circular strings with two equal angular momenta in CP3. The “short” M2 brane corresponds to a dual operator whose dimension at strong coupling scales as ∆ ∼λ1/4+ …, and we derive the leading non-planar correction to it.more » « less
An official website of the United States government
