skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural rearrangements and selection promote phenotypic evolution in Anolis lizards
Abstract The genomic characteristics of adaptively radiated groups could contribute to their high species number and ecological disparity, by increasing their evolutionary potential. Here, we explored the genomic variation of Anolis lizards, focusing on three species with distinct phenotypes: A. auratus, one of the species with the longest tail; A. frenatus, one of the largest species; and A. carolinensis, one of the species that inhabits the coldest environments. We assembled and annotated two new chromosome-level reference genomes for A. auratus and A. frenatus, and compared them with the available genomes of A. carolinensis and A. sagrei. We evaluated the presence of structural rearrangements, quantified the density of repeat elements, and identified potential signatures of positive selection in coding and regulatory regions. We detected substantial rearrangements in scaffolds 1, 2 and 3 of A. frenatus different from the other species, in which the rearrangement breakpoints corresponded to hotspots of developmental genes. Further, we detected an accumulation of repeats around key developmental genes in anoles and phrynosomatid outgroups. Finally, coding sequences and regulatory regions of genes relevant to development and physiology showed variation that could be associated with the unique phenotypes of the analyzed species. Our results show examples of the hierarchical genomic variation within anoles, that could provide the substrate that promoted phenotypic disparity and contributed to their adaptive radiation.  more » « less
Award ID(s):
1927194
PAR ID:
10646728
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genome Biology and Evolution
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arkhipova, Irina (Ed.)
    Abstract Genome size has been measurable since the 1940s but we still do not understand genome size variation. Caenorhabditis nematodes show strong conservation of chromosome number but vary in genome size between closely related species. Androdioecy, where populations are composed of males and self-fertile hermaphrodites, evolved from outcrossing, female-male dioecy, three times in this group. In Caenorhabditis, androdioecious genomes are 10–30% smaller than dioecious species, but in the nematode Pristionchus, androdioecy evolved six times and does not correlate with genome size. Previous hypotheses include genome size evolution through: 1) Deletions and “genome shrinkage” in androdioecious species; 2) Transposable element (TE) expansion and DNA loss through large deletions (the “accordion model”); and 3) Differing TE dynamics in androdioecious and dioecious species. We analyzed nematode genomes and found no evidence for these hypotheses. Instead, nematode genome sizes had strong phylogenetic inertia with increases in a few dioecious species, contradicting the “genome shrinkage” hypothesis. TEs did not explain genome size variation with the exception of the DNA transposon Mutator which was twice as abundant in dioecious genomes. Across short and long evolutionary distances Caenorhabditis genomes evolved through small structural mutations including gene-associated duplications and insertions. Seventy-one protein families had significant, parallel decreases across androdioecious Caenorhabditis including genes involved in the sensory system, regulatory proteins and membrane-associated immune responses. Our results suggest that within a dynamic landscape of frequent small rearrangements in Caenorhabditis, reproductive mode mediates genome evolution by altering the precise fates of individual genes, proteins, and the phenotypes they underlie. 
    more » « less
  2. Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii , a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences. Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii , will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease. 
    more » « less
  3. INTRODUCTION A major challenge in genomics is discerning which bases among billions alter organismal phenotypes and affect health and disease risk. Evidence of past selective pressure on a base, whether highly conserved or fast evolving, is a marker of functional importance. Bases that are unchanged in all mammals may shape phenotypes that are essential for organismal health. Bases that are evolving quickly in some species, or changed only in species that share an adaptive trait, may shape phenotypes that support survival in specific niches. Identifying bases associated with exceptional capacity for cellular recovery, such as in species that hibernate, could inform therapeutic discovery. RATIONALE The power and resolution of evolutionary analyses scale with the number and diversity of species compared. By analyzing genomes for hundreds of placental mammals, we can detect which individual bases in the genome are exceptionally conserved (constrained) and likely to be functionally important in both coding and noncoding regions. By including species that represent all orders of placental mammals and aligning genomes using a method that does not require designating humans as the reference species, we explore unusual traits in other species. RESULTS Zoonomia’s mammalian comparative genomics resources are the most comprehensive and statistically well-powered produced to date, with a protein-coding alignment of 427 mammals and a whole-genome alignment of 240 placental mammals representing all orders. We estimate that at least 10.7% of the human genome is evolutionarily conserved relative to neutrally evolving repeats and identify about 101 million significantly constrained single bases (false discovery rate < 0.05). We cataloged 4552 ultraconserved elements at least 20 bases long that are identical in more than 98% of the 240 placental mammals. Many constrained bases have no known function, illustrating the potential for discovery using evolutionary measures. Eighty percent are outside protein-coding exons, and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Constrained bases tend to vary less within human populations, which is consistent with purifying selection. Species threatened with extinction have few substitutions at constrained sites, possibly because severely deleterious alleles have been purged from their small populations. By pairing Zoonomia’s genomic resources with phenotype annotations, we find genomic elements associated with phenotypes that differ between species, including olfaction, hibernation, brain size, and vocal learning. We associate genomic traits, such as the number of olfactory receptor genes, with physical phenotypes, such as the number of olfactory turbinals. By comparing hibernators and nonhibernators, we implicate genes involved in mitochondrial disorders, protection against heat stress, and longevity in this physiologically intriguing phenotype. Using a machine learning–based approach that predicts tissue-specific cis - regulatory activity in hundreds of species using data from just a few, we associate changes in noncoding sequence with traits for which humans are exceptional: brain size and vocal learning. CONCLUSION Large-scale comparative genomics opens new opportunities to explore how genomes evolved as mammals adapted to a wide range of ecological niches and to discover what is shared across species and what is distinctively human. High-quality data for consistently defined phenotypes are necessary to realize this potential. Through partnerships with researchers in other fields, comparative genomics can address questions in human health and basic biology while guiding efforts to protect the biodiversity that is essential to these discoveries. Comparing genomes from 240 species to explore the evolution of placental mammals. Our new phylogeny (black lines) has alternating gray and white shading, which distinguishes mammalian orders (labeled around the perimeter). Rings around the phylogeny annotate species phenotypes. Seven species with diverse traits are illustrated, with black lines marking their branch in the phylogeny. Sequence conservation across species is described at the top left. IMAGE CREDIT: K. MORRILL 
    more » « less
  4. Summary Eukaryotic genomes harbor many forms of variation, including nucleotide diversity and structural polymorphisms, which experience natural selection and contribute to genome evolution and biodiversity. However, harnessing this variation for agriculture hinges on our ability to detect, quantify, catalog, and utilize genetic diversity.Here, we explore seven complete genomes of the emerging biofuel crop pennycress (Thlaspi arvense) drawn from across the species’s current genetic diversity to catalogue variation in genome structure and content.Across this new pangenome resource, we find contrasting evolutionary modes in different genomic regions. Gene-poor, repeat-rich pericentromeric regions experience frequent rearrangements, including repeated centromere repositioning. In contrast, conserved gene-dense chromosome arms maintain large-scale synteny across accessions, even in fast-evolving immune genes where microsynteny breaks down across species but the macrosynteny of gene cluster positioning is maintained.Our findings highlight that multiple elements of the genome experience dynamic evolution that conserves functional content on the chromosome scale but allows rearrangement and presence-absence variation on a local scale. This diversity is invisible to classical reference-based approaches and highlights the strength and utility of pangenomic resources. These results provide a valuable case study of rapid genomic structural evolution within a species and powerful resources for crop development in an emerging biofuel crop. 
    more » « less
  5. Wittkopp, Patricia (Ed.)
    Abstract Recent pangenome studies have revealed a large fraction of the gene content within a species exhibits presence-absence variation (PAV). However, coding regions alone provide an incomplete assessment of functional genomic sequence variation at the species level. Little to no attention has been paid to noncoding regulatory regions in pangenome studies, though these sequences directly modulate gene expression and phenotype. To uncover regulatory genetic variation, we generated chromosome-scale genome assemblies for thirty Arabidopsis thaliana accessions from multiple distinct habitats and characterized species level variation in Conserved Noncoding Sequences (CNS). Our analyses uncovered not only PAV and positional variation (PosV) but that diversity in CNS is non-random, with variants shared across different accessions. Using evolutionary analyses and chromatin accessibility data, we provide further evidence supporting roles for conserved and variable CNS in gene regulation. Additionally, our data suggests transposable elements contribute to CNS variation. Characterizing species-level diversity in all functional genomic sequences may later uncover previously unknown mechanistic links between genotype and phenotype. 
    more » « less