A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021–2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0–480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.
more »
« less
This content will become publicly available on December 20, 2026
Vertical profiles of microplastics in coastal sediments of Panjang Island, Java Sea
The proliferation of plastic pollution has led to the widespread accumulation of microplastics (MPs) in marine ecosystems. While surface sediment contamination is relatively well studied, knowledge of vertical MP distri- bution within sediment columns remains limited. This study examines the abundance, vertical distribution, and characteristics of MPs in subtidal and intertidal sediments of Panjang Island, Java Sea. Fifteen shallow (10 cm) and three deep (~100 cm) sediment cores were analyzed for MP abundance, morphology, size, color, and polymer using microscopy and ATR-FTIR. MPs were detected in all cores, with an average concentration of 0.49 ± 0.28 MPs g⁻¹ in surface sediments. The highest surface concentration (2.08 ± 0.22 MPs g⁻¹) occurred in the southwest, a sheltered site with greater anthropogenic influence, while the lowest (0.05 ± 0.07 MPs g⁻¹) was recorded in the northwest, a remote and less disturbed area. Fibers dominated particle types. White, black, and blue were the most common colors, and size distributions were skewed toward particles <1 mm. Polypropylene and polyethylene were the most frequent polymers, reflecting their widespread use and persistence. Vertical profiles revealed higher MP concentrations near the surface, indicating intensified inputs in recent decades. No MPs were detected below 70 cm, suggesting limited downward migration and marking the onset of contami- nation during the plastic era. This study also found MPs in deeper sediment layer, likely due to post-depositional processes such as bioturbation. These findings demonstrate that sediment cores serve as valuable archives of historical MP deposition, capturing both global production trends and local environmental influences, and provide a basis for targeted management strategies.
more »
« less
- Award ID(s):
- 2049567
- PAR ID:
- 10646791
- Editor(s):
- NA
- Publisher / Repository:
- Elsevievier
- Date Published:
- Journal Name:
- Regional Studies in Marine Science
- Volume:
- 91
- Issue:
- 104518
- ISSN:
- 2352-4855
- Page Range / eLocation ID:
- 1-10
- Subject(s) / Keyword(s):
- Microplastic pollution Sediment core Tropical island Vertical profile Historical microplastic
- Format(s):
- Medium: X Size: N/A Other: N/A
- Size(s):
- N/A
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
no editor (Ed.)Many different techniques are used to extract microplastics (MPs) from sediment samples of variable composition and grain size. The lack of uniform methodology makes it challenging to compare results across studies and to select methods appropriate to local sedimentary conditions. This study (a) evaluates the separation efficiency, yield, and contamination (blank) of settling compared centrifugation density separation, and (b) examines the distribution of MP across successive separation phases (interstitial water, organic matter, sediment). Two different density-separation dependent extraction methods were tested with tropical marine sediments from the US Virgin Islands with variable grain size and composition: (1) suspension within a settling column, and (2): centrifugation. The samples were processed under a laminar flow hood using published best practices to minimize contamination. The two separation techniques produced similar MP yields (85-100%), which were calculated by tracing polyethylene microspheres. However, processing in the settling column sometimes produced incomplete settling of fine organic matter and took a significantly longer time (week vs. minutes) than did separation via centrifugation. Analytical blanks (contamination) were also slightly greater using a settling column (avg: 5.3±1.1) vs the centrifuge (avg: 3.6±0.9). However, the most important reason why the centrifugation is preferable is that it allows for the complete removal of separatory solutions via compaction of the sediment. This allows phased separation of MPs through sequential interstitial water removal, hydrogen peroxide treatment and removal (to target organic matter bound MP), and density separation phases. Our experiments showed that a significant portion of the total MP in the samples were potentially located in the interstitial water phase (16±12%) and the following hydrogen peroxide phase (25±20%). In the literature, intermediate treatment solutions are often discarded, resulting in an underestimation of total MP in the sediments. In summary, we found that the most effective method of MP extraction from organic rich or fine-grained sediments is a phased centrifugation process which includes counting MP from all phases.more » « less
-
Microplastic (MP) pollution is a growing global concern—especially in estuarine areas that serve as natural habitats and nurseries for many marine organisms. One such marine organism is the Eastern oyster (Crassostrea virginica), which is a reef-forming keystone species in the Chesapeake Bay, the largest estuary in the United States. To understand the potential impacts of MP pollution on the estuary ecosystem, the effects of high-density polyethylene (HDPE) MPs on Eastern oyster larval survival and development were investigated. Three cohorts of larvae were exposed to HDPE MPs with a size of 10–90 µm at a 10 mg/L concentration, after 7 to 11 days of fertilization. After exposure, the number and size of oyster larvae were measured twice a week for approximately 2 weeks until larval settlement. The experiment found that there were no significant differences in the rate of survival between the control and MP-addition treatments. However, we noticed that larval development was significantly delayed with the MP treatment. The percentage of larvae that were ready to settle was 64% with the control treatment compared to 43.5% with the MP treatment. This delay in growth resulted in a delayed larval settlement, which could adversely affect the survival of the Eastern oyster due to the increased risk of predation. The current study demonstrates that MPs could be a risk to the ecology of estuaries, and plastic pollution management is needed for the preservation of these estuaries.more » « less
-
no editor. (Ed.)The Tijuana River Watershed encompasses 1750 square miles of territory in both Mexico and the United States, culminating at the National EstuarineResearch Reserve. While this area comprises one of the largest undisturbed wetlands in the state, it is one of the most polluted rivers in SouthernCalifornia, draining raw sewage and nonpoint source pollution. Despite extensive research, microplastic pollution along the beaches has not been explored. The objective of this study is to determine how the abundance and morphology of microplastic pollution in beach sediments vary with distance along the littoral cell from the Tijuana River outfall. Twenty samples were collected at 10 sites that span from the Tijuana River outfall to Mission Beach, San Diego. They are characterized as outfall sites, low-visitation beaches near the outfall, and high-visitation beaches further from the outfall. Solutions of 100ml sediment and 400ml hyper-saline solution were mixed and settled for 16 hours before being processed using a vacuum filtration system in a laminar fl ow hood. The microplastics (MP)were counted and classified using light microscopy. Laboratory practices to reduce laboratory contamination were employed and analytical blanks were run for every 3 samples. MPs ranged from 1 to 199/100ml sediment, of which approximately 91% were fibers. The greatest MP abundance occurred at the river outfall sites, but recovery rates were highly variable, and the analytical blanks ranged from 3-63/100ml sediment. The results oft his study suggest that microplastic distribution in sandy beach sediments is patchy but higher near the Tijuana River Outfall, and that future studies should report analytical blanks and employ methods to reduce contamination. Understanding the relationship between watersheds and microplastic distributions may inspire policy change on water quality protections in watersheds.more » « less
-
The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies.more » « less
An official website of the United States government
