skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2026

Title: The ALMA Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO). II. Dust and Gas Disk Properties in the Ophiuchus Star-forming Region
Abstract The ALMA survey of Gas Evolution in PROtoplanetary disks (AGE-PRO) Large Program aims to trace the evolution of gas disk mass and size throughout the lifetime of protoplanetary disks by using the Atacama Large Millimeter/submillimeter Array (ALMA). This paper presents Band-6 ALMA observations of 10 embedded (Class I and Flat Spectrum) sources in the Ophiuchus molecular cloud, with spectral types ranging from M3 to K6 stars, which serve as the evolutionary starting point in the AGE-PRO sample. While we find four nearly edge-on disks (≥70°), and three highly inclined disks (≥60°) in our sample, we show that, as a population, embedded disks in Ophiuchus are not significantly contaminated by more-evolved, but highly inclined sources. We derived dust disk masses from the Band-6 continuum and estimated gas disk masses from the C18OJ= 2−1 and C17OJ= 2−1 lines. The mass estimates from the C17O line are slightly higher, suggesting C18O emission might be partially optically thick. While the12CO and13CO lines are severely contaminated by extended emission and self-absorption, the C18O and C17O lines are allowed to trace the radial extent of the gaseous disks. From these measurements, we found that the C18OJ= 2−1 and C17OJ= 2−1 fluxes correlate well with each other and with the continuum fluxes. Furthermore, the C18O and C17O lines present a larger radial extension than disk dust sizes by factors ranging from ∼1.5 to ∼2.5, as is found for Class II disks using the radial extension of the12CO. In addition, we have detected outflows in three disks from12CO observations.  more » « less
Award ID(s):
2205617
PAR ID:
10646924
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
989
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Band 6 and Band 7 observations of 10 Lupus disks around M3-K6 stars from the Atacama Large Millimeter/submillimeter Array survey of Gas Evolution in PROtoplanetary disks (AGE-PRO) Large Program. In addition to continuum emission in both bands, our Band 6 setup covers the12CO,13CO, and C18OJ= 2–1 lines, while our Band 7 setup covers the N2H+J= 3–2 line. All of our sources are detected in12CO and13CO; seven out of ten are detected in C18O; and three are detected in N2H+. We find strong correlations between the CO isotopologue line fluxes and the continuum flux densities. With the exception of one disk, we also identify a strong correlation between the C18OJ= 2–1 and N2H+J= 3–2 fluxes, indicating similar CO abundances across this sample. For the two sources with well-resolved continuum and12COJ= 2–1 images, we find that their gas-to-dust size ratio is consistent with the median value of ∼2 inferred from a larger sample of Lupus disks. We derive dust disk masses from continuum flux densities. We estimate gas disk masses by comparing C18OJ= 2–1 line fluxes with those predicted by the limited grid of self-consistent disk models of M. Ruaud et al. A comparison of these mass estimates with those derived by L. Trapman et al., using a combination of CO isotopologue and N2H+line emission, shows that the masses are consistent with each other. Some discrepancies appear for small and faint disks, but they are still within the uncertainties. Both methods find gas disk masses increase with dust disk masses, and gas-to-dust mass ratios are between 10 and 100 in the AGE-PRO Lupus sample. 
    more » « less
  2. Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) large program AGE-PRO explores protoplanetary disk evolution by studying gas and dust across various ages. This work focuses on 10 evolved disks in Upper Scorpius, observed in dust continuum emission, CO and its isotopologues, and N2H+with ALMA Bands 6 and 7. Disk radii, from the radial location enclosing 68% of the flux, are comparable to those in the younger Lupus region for both gas and dust tracers. However, solid masses are about an order of magnitude below those in Lupus and Ophiuchus, while the dust spectral index suggests some level of dust evolution. These empirical findings align with a combination of radial drift, dust trapping, and grain growth into larger bodies. A moderate correlation between CO and continuum fluxes suggests a link between gas and dust content, through the increased scatter compared to younger regions, possibly due to age variations, gas-to-dust ratio differences, or CO depletion. Additionally, the correlation between C18O and N2H+fluxes observed in Lupus persists in Upper Scorpius, indicating a relatively stable CO gas abundance over the Class II stage of disk evolution. In conclusion, the AGE-PRO survey of Upper Scorpius disks reveals intriguing trends in disk evolution. The findings point toward potential gas evolution and the presence of dust traps in these older disks. Future high-resolution observations are needed to confirm these possibilities and further refine our understanding of disk evolution and planet formation in older environments. 
    more » « less
  3. Abstract Detecting planet signatures in protoplanetary disks is fundamental to understanding how and where planets form. In this work, we report dust and gas observational hints of planet formation in the disk around 2MASS J16120668-301027, as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Large Program “AGE-PRO: ALMA survey of Gas Evolution in Protoplanetary disks.” The disk was imaged with the ALMA at Band 6 (1.3 mm) in dust continuum emission and four molecular lines:12CO(J= 2–1),13CO(J= 2–1), C18O(J= 2–1), and H2CO(J= 3(3,0)–2(2,0)). Resolved observations of the dust continuum emission (angular resolution of ∼150 mas, 20 au) show a ring-like structure with a peak at 0.″57 (75 au), a deep gap with a minimum at 0.″24 (31 au), an inner disk, a bridge connecting the inner disk and the outer ring, along with a spiral arm structure, and a tentative detection (to 3σ) of a compact emission at the center of the disk gap, with an estimated dust mass of ∼2.7−12.9 Lunar masses. We also detected a kinematic kink (not coincident with any dust substructure) through several12CO channel maps (angular resolution ∼200 mas, 30 au), located at a radius of ∼0.″875 (115.6 au). After modeling the12CO velocity rotation around the protostar, we identified a purple tentative rotating-like structure at the kink location with a geometry similar to that of the disk. We discuss potential explanations for the dust and gas substructures observed in the disk and their potential connection to signatures of planet formation. 
    more » « less
  4. Abstract We perform visibility fitting to the dust continuum Band 6 1.3 mm data of the 30 protoplanetary disks in the Atacama Large Millimeter/submillimeter Array Survey of Gas Evolution of PROtoplanetary Disks (AGE-PRO) Large Program. We obtain disk geometries, dust-disk radii, and azimuthally symmetric radial profiles of the intensity of the dust continuum emission. We examine the presence of continuum substructures in the AGE-PRO sample by using these radial profiles and their residuals. We detect substructures in 15 out of 30 disks. We report five disks with large (>15 au) inner dust cavities. The Ophiuchus Class I disks show dust-disk substructures in ∼80% of the resolved sources. This evidences the early formation of substructures in protoplanetary disks. A spiral is identified in IRS 63, hinting to gravitational instability in this massive disk. We compare our dust-disk brightness radial profiles with gas-disk brightness radial profiles and discuss colocal substructures in both tracers. In addition, we discuss the evolution of dust-disk radii and substructures across Ophiuchus, Lupus, and Upper Scorpius. We find that disks in Lupus and Upper Scorpius with large inner dust cavities have typical gas-disk masses, suggesting an abundance of dust cavities in these regions. The prevalence of pressure dust traps at later ages is supported by a potential trend with time with more disks with large inner dust cavities (ortransition disks) in Upper Scorpius and the absence of evolution of dust-disk sizes with time in the AGE-PRO sample. We propose this is caused by an evolutionary sequence with a high fraction of protoplanetary disks with inner protoplanets carving dust cavities. 
    more » « less
  5. Abstract High-spatial-resolution observations of CO isotopologue line emission in protoplanetary disks at mid-inclinations (≈30°–75°) allow us to characterize the gas structure in detail, including radial and vertical substructures, emission surface heights and their dependencies on source characteristics, and disk temperature profiles. By combining observations of a suite of CO isotopologues, we can map the two-dimensional (r,z) disk structure from the disk upper atmosphere, as traced by CO, to near the midplane, as probed by less abundant isotopologues. Here, we present high-angular-resolution (≲0.″1 to ≈0.″2; ≈15–30 au) observations of CO,13CO, and C18O in either or bothJ= 2–1 andJ= 3–2 lines in the transition disks around DM Tau, Sz 91, LkCa 15, and HD 34282. We derived line emission surfaces in CO for all disks and in13CO for the DM Tau and LkCa 15 disks. With these observations, we do not resolve the vertical structure of C18O in any disk, which is instead consistent with C18O emission originating from the midplane. Both theJ= 2–1 andJ= 3–2 lines show similar heights. Using the derived emission surfaces, we computed radial and vertical gas temperature distributions for each disk, including empirical temperature models for the DM Tau and LkCa 15 disks. After combining our sample with literature sources, we find that13CO line emitting heights are also tentatively linked with source characteristics, e.g., stellar host mass, gas temperature, disk size, and show steeper trends than seen in CO emission surfaces. 
    more » « less