An artificial or meta material was fabricated by printing I-shaped metal patterns periodically on a dielectric host medium to demonstrate frequency blocking property. The research was conducted by 3D electromagnetic simulation software first and then verified by several experiments. Experimental results showed that center frequency of blocked band could be controlled by adjusting the size and shape of I-shaped metal patterns.
more »
« less
This content will become publicly available on July 29, 2026
Signal suppression 2.0: An updated account of attentional capture and suppression
More Like this
-
-
null (Ed.)Abstract Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular ‘snowflake’ yeast across a range of metabolically-available O 2 levels. While yeast under anaerobic and high-O 2 conditions evolved to be considerably larger, intermediate O 2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O 2 -mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.more » « less
-
null (Ed.)Abstract Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres.more » « less
An official website of the United States government
