skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Approximation-First Timeseries Query At Scale
Timeseries monitoring systems such as Prometheus play a crucial role in gaining observability of the underlying system infrastructure. These systems collect timeseries metrics from various system components and perform monitoring queries over periodic window-based aggregations (i.e., rule queries). However, despite wide adoption, the operational costs and query latency of rule queries remain high. In this paper, we identify major bottlenecks associated with repeated data scans and query computations concerning window overlaps in rule queries, and present PromSketch, an approximation-first query framework as intermediate caches for monitoring systems. It enables low operational costs and query latency, by combining approximate window-based query frameworks and sketch-based precomputation. PromSketch is implemented as a standalone module that can be integrated into Prometheus and VictoriaMetrics, covering 70% of Prometheus' aggregation over time queries. Our evaluation shows that PromSketch achieves up to a two-order-of-magnitude reduction in query latency over Prometheus and VictoriaMetrics, while lowering operational dollar costs of query processing by three orders of magnitude compared to Prometheus and by at least 4× compared to VictoriaMetrics with at most 5% average errors across statistics.  more » « less
Award ID(s):
2431093 2415758
PAR ID:
10647194
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
VLDB
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
18
Issue:
8
ISSN:
2150-8097
Page Range / eLocation ID:
2348 to 2361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present TVA, a multi-party computation (MPC) system for secure analytics on secret-shared time series data. TVA achieves strong security guarantees in the semi-honest and malicious settings, and high expressivity by enabling complex analytics on inputs with unordered and irregular timestamps. TVA is the first system to support arbitrary composition of oblivious window operators, keyed aggregations, and multiple filter predicates, while keeping all data attributes private, including record timestamps and user-defined values in query predicates. At the core of the TVA system lie novel protocols for secure window assignment: (i) a tumbling window protocol that groups records into fixed-length time buckets and (ii) two session window protocols that identify periods of activity followed by periods of inactivity. We also contribute a new protocol for secure division with a public divisor, which may be of independent interest. We evaluate TVA on real LAN and WAN environments and show that it can efficiently compute complex window-based analytics on inputs of 2^22 records with modest use of resources. When compared to the state-of-the-art, TVA achieves up to 5.8× lower latency in queries with multiple filters and two orders of magnitude better performance in window aggregation. 
    more » « less
  2. The constant flux of data and queries alike has been pushing the boundaries of data analysis systems. The increasing size of raw data files has made data loading an expensive operation that delays the data-to-insight time. To alleviate the loading cost, in situ query processing systems operate directly over raw data and offer instant access to data. At the same time, analytical workloads have increasing number of queries. Typically, each query focuses on a constantly shifting—yet small—range. As a result, minimizing the workload latency requires the benefits of indexing in in situ query processing. In this paper, we present an online partitioning and indexing scheme, along with a partitioning and indexing tuner tailored for in situ querying engines. The proposed system design improves query execution time by taking into account user query patterns, to (i) partition raw data files logically and (ii) build lightweight partition-specific indexes for each partition. We build an in situ query engine called Slalom to showcase the impact of our design. Slalom employs adaptive partitioning and builds non-obtrusive indexes in different partitions on-the-fly based on lightweight query access pattern monitoring. As a result of its lightweight nature, Slalom achieves efficient query processing over raw data with minimal memory consumption. Our experimentation with both microbenchmarks and real-life workloads shows that Slalom outperforms state-of-the-art in situ engines and achieves comparable query response times with fully indexed DBMS, offering lower cumulative query execution times for query workloads with increasing size and unpredictable access patterns. 
    more » « less
  3. Gridded datasets occur in several domains. These datasets comprise (un)structured grid points, where each grid point is characterized by XY(Z) coordinates in a spatial referencing system. The data available at individual grid points are high-dimensional encapsulating multiple variables of interest. This study has two thrusts. The first targets supporting effective management of voluminous gridded datasets while reconciling challenges relating to colocation and dispersion. The second thrust is to support sliding (temporal) window queries over the gridded dataset. Such queries involve sliding a temporal window over the data to identify spatial locations and chronological time points where the specified predicate evaluates to true. Our methodology includes support for a space-efficient data structure for organizing information within the data, query decomposition based on dyadic intervals, support for temporal anchoring, query transformations, and effective evaluation of query predicates. Our empirical benchmarks are conducted on representative voluminous high dimensional datasets such as gridMET (historical meteorological data) and MACA (future climate datasets based on the RCP 8.5 greenhouse gas trajectory). In our benchmarks, our system can handle throughputs of over 3000 multi-predicate sliding window queries per second. 
    more » « less
  4. Query rewriting is often a prerequisite for effective query optimization, particularly for poorly-written queries. Prior work on query rewriting has relied on a set of "rules" based on syntactic pattern-matching. Whether relying on manual rules or auto-generated ones, rule-based query rewriters are inherently limited in their ability to handle new query patterns. Their success is limited by the quality and quantity of the rules provided to them. To our knowledge, we present the first synthesis-based query rewriting technique, SlabCity, capable of whole-query optimization without relying on any rewrite rules. SlabCity directly searches the space of SQL queries using a novel query synthesis algorithm that leverages a new concept called query dataflows. We evaluate SlabCity on four workloads, including a newly curated benchmark with more than 1000 real-life queries. We show that not only can SlabCity optimize more queries than state-of-the-art query rewriting techniques, but interestingly, it also leads to queries that are significantly faster than those generated by rule-based systems. 
    more » « less
  5. null (Ed.)
    Streaming applications from algorithmic trading to traffic management deploy Kleene patterns to detect and aggregate arbitrarily-long event sequences, called event trends. State-of-the-art systems process such queries in two steps. Namely, they first construct all trends and then aggregate them. Due to the exponential costs of trend construction, this two-step approach su↵ers from both a long delays and high memory costs. To overcome these limitations, we propose the Graph-based Real-time Event Trend Aggregation (GRETA) approach that dynamically computes event trend aggregation without first constructing these trends. We define the GRETA graph to compactly encode all trends. Our GRETA runtime incrementally maintains the graph, while dynamically propagating aggregates along its edges. Based on the graph, the final aggregate is incrementally updated and instantaneously returned at the end of each query window. Our GRETA runtime represents a win-win solution, reducing both the time complexity from exponential to quadratic and the space complexity from exponential to linear in the number of events. Our experiments demonstrate that GRETA achieves up to four orders of magnitude speed-up and up to 50–fold memory reduction compared to the state-of-the-art two-step approaches. 
    more » « less