Rhodopsins are light-responsive proteins forming two vast and evolutionary distinct superfamilies whose functions are invariably triggered by the photoisomerization of a single retinal chromophore. In 2018 a third widespread superfamily of rhodopsins called heliorhodopsins was discovered using functional metagenomics. Heliorhodopsins, with their markedly different structural features with respect to the animal and microbial superfamilies, offer an opportunity to study how evolution has manipulated the chromophore photoisomerization to achieve adaptation. One question is related to the mechanism of such a reaction and how it differs from that of animal and microbial rhodopsins. To address this question, we use hundreds of quantum-classical trajectories to simulate the spectroscopically documented picosecond light-induced dynamics of a heliorhodopsin from the archaea thermoplasmatales archaeon (TaHeR). We show that, consistently with the observations, the trajectories reveal two excited state decay channels. However, inconsistently with previous hypotheses, only one channel is associated with the –C13QC14– rotation of microbial rhodopsins while the second channel is characterized by the –C11QC12– rotation typical of animal rhodopsins. The fact that such –C11QC12– rotation is aborted upon decay and ground state relaxation, explains why illumination of TaHeR only produces the 13-cis isomer with a low quantum efficiency. We argue that the documented lack of regioselectivity in double-bond excited state twisting motion is the result of an ‘‘adaptation’’ that could be completely lost via specific residue substitutions modulating the steric hindrance experienced along the isomerization motion.
more »
« less
This content will become publicly available on August 21, 2026
Quantum Dynamics Predicts Coherent Oscillations in the Early Times of a Biological Photoisomerization
In this work, we study the quantum dynamics of the isomerization associated with the primary event in vision employing a model for the 2-cis-penta-2,4-dieniminium cation (cis-PSB3). We aim to demonstrate that the observed relationship between a specific wag mode and the reaction quantum yield emerges naturally from wavepacket propagation. To do so, we address two previously undetected methodological issues related to (i) establishing the appropriate level of convergence of the quantum dynamics calculations, and (ii) describing the emergence of distinct oscillatory behaviors during the formation of the cis and trans isomers in the ground state following cis-PSB3 photoexcitation. The two issues are strictly related, since only upon reliable convergence, the simulated dynamics is able to capture the large amplitude motion associated with the torsional and wag deformations in the region of the reactive bond.
more »
« less
- Award ID(s):
- 2102619
- PAR ID:
- 10647477
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 16
- Issue:
- 33
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 8486 to 8494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Color pattern mimicry in Heliconius butterflies is a classic case study of complex trait adaptation via selection on a few large effect genes. Association studies have linked color pattern variation to a handful of noncoding regions, yet the presumptive cis-regulatory elements (CREs) that control color patterning remain unknown. Here we combine chromatin assays, DNA sequence associations, and genome editing to functionally characterize 5 cis-regulatory elements of the color pattern gene optix . We were surprised to find that the cis-regulatory architecture of optix is characterized by pleiotropy and regulatory fragility, where deletion of individual cis-regulatory elements has broad effects on both color pattern and wing vein development. Remarkably, we found orthologous cis-regulatory elements associate with wing pattern convergence of distantly related comimics, suggesting that parallel coevolution of ancestral elements facilitated pattern mimicry. Our results support a model of color pattern evolution in Heliconius where changes to ancient, multifunctional cis-regulatory elements underlie adaptive radiation.more » « less
-
We demonstrate how two-photon excitation with quantum light can influence elementary photochemical events. The azobenzene trans → cis isomerization following entangled two-photon excitation is simulated using quantum nuclear wave packet dynamics. Photon entanglement modulates the nuclear wave packets by coherently controlling the transition pathways. The photochemical transition state during passage of the reactive conical intersection in azobenzene photoisomerization is strongly affected with a noticeable alteration of the product yield. Quantum entanglement thus provides a novel control knob for photochemical reactions. The distribution of the vibronic coherences during the conical intersection passage strongly depends on the shape of the initial wave packet created upon quantum light excitation. X-ray signals that can experimentally monitor this coherence are simulated.more » « less
-
Criegee intermediates (CIs) are of great significance to Earth’s troposphere – implicated in altering the tropospheric oxidation cycle and in forming low volatility products that typically condense to form secondary organic aerosols (SOAs). As such, their chemistry has attracted vast attention in recent years. In particular, the unimolecular decay of thermal and vibrationally-excited CIs has been the focus of several experimental and computational studies, and it now recognized that CIs undergo unimolecular decay to form OH radicals. In this contribution we reveal insight into the chemistry of CIs by highlighting the hitherto neglected multi-state contribution to the ground state unimolecular decay dynamics of the Criegee intermediate products. The two key intermediates of present focus are dioxirane and vinylhydroperoxide – known to be active intermediates that mediate the unimolecular decay of CH2OO and CH3CHOO, respectively. In both cases the unimolecular decay path encounters conical intersections, which may play a pivotal role in the ensuing dynamics. This hitherto unrecognized phenomenon may be vital in the way in which the reactivity of CIs are modelled and is likely to affect the ensuing dynamics associated with the unimolecular decay of a given CI.more » « less
-
Aggregating data is fundamental to data analytics, data exploration, and OLAP. Approximate query processing (AQP) techniques are often used to accelerate computation of aggregates using samples, for which confidence intervals (CIs) are widely used to quantify the associated error. CIs used in practice fall into two categories: techniques that are tight but not correct, i.e., they yield tight intervals but only offer asymptoticguarantees,makingthem unreliable, or techniques that are correct but not tight, i.e., they offer rigorous guarantees, but are overly conservative, leading to confidence intervals that are too loose to be useful. In this paper, we develop a CI technique that is both correct and tighter than traditional approaches. Starting from conservative CIs, we identify two issues they often face: pessimistic mass allocation (PMA) and phantom outlier sensitivity (PHOS). By developing a novel range-trimming technique for eliminating PHOS and pairing it with known CI techniques without PMA, we develop a technique for computing CIs with strong guarantees that requires fewer samples for the same width. We implement our techniques underneath a sampling-optimized in-memory column store and show how they accelerate queries involving aggregates on real datasets with typical speedups on the order of 10× over both traditional AQP-with-guarantees and exact methods, all while obeying accuracy constraints.more » « less
An official website of the United States government
