skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 15, 2026

Title: Vibrational Frequencies and Infrared Spectra of Polycyclic Antiaromatic Hydrocarbons from Biphenylene to Anti-Kekulene: Unexplored Potential Contributors to the Mid-Infrared Region
Award ID(s):
2150352
PAR ID:
10647535
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
ACS Earth and Space Chemistry
ISSN:
2472-3452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optical technologies in the long‐wave infrared (LWIR) spectrum (7–14 μm) offer important advantages for high‐resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR‐transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so‐called IR‐fingerprint region. We report on a new molecular‐design approach to prepare high refractive index polymers with enhanced LWIR transparency. Computational methods were used to accelerate the design of novel molecules and polymers. Using this approach, we have prepared chalcogenide hybrid inorganic/organic polymers (CHIPs) with enhanced LWIR transparency and thermomechanical properties via inverse vulcanization of elemental sulfur with new organic co‐monomers. 
    more » « less