skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TOI-1173 A b: The First Inflated Super-Neptune in a Wide Binary System
Abstract Among Neptunian mass exoplanets (20−50M), puffy hot Neptunes are extremely rare, and their unique combination of low mass and extended radii implies very low density (ρ< 0.3 g cm−3). Over the last decade, only a few puffy planets have been detected and precisely characterized with both transit and radial velocity observations, most notably including WASP-107b, TOI-1420b, and WASP-193b. In this paper, we report the discovery of TOI-1173 Ab, a low-density ( ρ = 0.195 0.017 + 0.018 g cm−3) super-Neptune withP= 7.06 days in a nearly circular orbit around the primary G-dwarf star in the wide binary system TOI-1173 A/B. Using radial velocity observations with the MAROON-X and HIRES spectrographs and transit photometry from TESS, we determine a planet mass ofMp= 27.4 ± 1.7Mand radius ofRp= 9.19 ± 0.18R. TOI-1173 Abis the first puffy super-Neptune planet detected in a wide binary system (projected separation ∼11,400 au). We explore several mechanisms to understand the puffy nature of TOI-1173 Aband show that tidal heating is the most promising explanation. Furthermore, we demonstrate that TOI-1173 Ablikely has maintained its orbital stability over time and may have undergone von-Zeipel–Lidov–Kozai migration followed by tidal circularization, given its present-day architecture, with important implications for planet migration theory and induced engulfment into the host star. Further investigation of the atmosphere of TOI-1173 Abwill shed light on the origin of close-in low-density Neptunian planets in field and binary systems, while spin–orbit analyses may elucidate the dynamical evolution of the system.  more » « less
Award ID(s):
2108465
PAR ID:
10647704
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astronomical Journal
Volume:
168
Issue:
2
ISSN:
0004-6256
Page Range / eLocation ID:
91
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of 14.95 3.92 + 4.10 M, and a density of ρ = 0.61 0.17 + 0.18 g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs. 
    more » « less
  2. Abstract The “super-puffs” are a population of planets that have masses comparable to that of Neptune but radii similar to Jupiter, leading to extremely low bulk densities (ρp ≲ 0.2 g cm−3) that are not easily explained by standard core accretion models. Interestingly, several of these super-puffs are found in orbits significantly misaligned with their host stars’ spin axes, indicating past dynamical excitation that may be connected to their low densities. Here, we present new Magellan/Planet Finder Spectrograph radial velocity measurements of WASP-193, a late F star hosting one of the least dense transiting planets known to date ( M p = 0.11 2 0.034 + 0.029 M J , R p = 1.31 9 0.048 + 0.056 R J p = 0.060 ± 0.019 g cm−3). We refine the bulk properties of WASP-193 b and use interior structure models to determine that the planet can be explained if it consists of roughly equal amounts of metals and H/He, with a metal fraction ofZ= 0.42. The planet is likely substantially reinflated due to its host star’s evolution, and expected to be actively undergoing mass loss. We also measure the projected stellar obliquity using the Rossiter–McLaughlin effect, finding that WASP-193 b is on an orbit well aligned with the stellar equator, with λ = 1 6 15 + 16 degrees. WASP-193 b is the first Jupiter-sized super-puff on a relatively well-aligned orbit, suggesting a diversity of formation pathways for this population of planets. 
    more » « less
  3. Abstract We report the discovery of a close-in (Porb= 3.349 days) warm Neptune with clear transit timing variations (TTVs) orbiting the nearby (d= 47.3 pc) active M4 star, TOI-2015. We characterize the planet's properties using Transiting Exoplanet Survey Satellite (TESS) photometry, precise near-infrared radial velocities (RVs) with the Habitable-zone Planet Finder Spectrograph, ground-based photometry, and high-contrast imaging. A joint photometry and RV fit yields a radius R p = 3.37 0.20 + 0.15 R , mass m p = 16.4 4.1 + 4.1 M , and density ρ p = 2.32 0.37 + 0.38 g cm 3 for TOI-2015 b, suggesting a likely volatile-rich planet. The young, active host star has a rotation period ofProt= 8.7 ± 0.9 days and associated rotation-based age estimate of 1.1 ± 0.1 Gyr. Though no other transiting planets are seen in the TESS data, the system shows clear TTVs of super-period P sup 430 days and amplitude ∼100 minutes. After considering multiple likely period-ratio models, we show an outer planet candidate near a 2:1 resonance can explain the observed TTVs while offering a dynamically stable solution. However, other possible two-planet solutions—including 3:2 and 4:3 resonances—cannot be conclusively excluded without further observations. Assuming a 2:1 resonance in the joint TTV-RV modeling suggests a mass of m b = 13.3 4.5 + 4.7 M for TOI-2015 b and m c = 6.8 2.3 + 3.5 M for the outer candidate. Additional transit and RV observations will be beneficial to explicitly identify the resonance and further characterize the properties of the system. 
    more » « less
  4. Abstract Hot Jupiters were many of the first exoplanets discovered in the 1990s, but in the decades since their discovery the mysteries surrounding their origins have remained. Here we present nine new hot Jupiters (TOI-1855 b, TOI-2107 b, TOI-2368 b, TOI-3321 b, TOI-3894 b, TOI-3919 b, TOI-4153 b, TOI-5232 b, and TOI-5301 b) discovered by NASA’sTESSmission and confirmed using ground-based imaging and spectroscopy. These discoveries are the first in a series of papers named the Migration and Evolution of giant ExoPlanets survey and are part of an ongoing effort to build a complete sample of hot Jupiters orbiting FGK stars, with a limiting GaiaG-band magnitude of 12.5. This effort aims to use homogeneous detection and analysis techniques to generate a set of precisely measured stellar and planetary properties that is ripe for statistical analysis. The nine planets presented in this work occupy a range of masses (0.55MJ<MP< 3.88MJ) and sizes (0.967RJ<RP< 1.438RJ) and orbit stars that have an effective temperature in the range of 5360 K <Teff< 6860 K with GaiaG-band magnitudes ranging from 11.1 to 12.7. Two of the planets in our sample have detectable orbital eccentricity: TOI-3919 b ( e = 0.259 0.036 + 0.033 ) and TOI-5301 b ( e = 0.33 0.10 + 0.11 ). These eccentric planets join a growing sample of eccentric hot Jupiters that are consistent with high-eccentricity tidal migration, one of the three most prominent theories explaining hot Jupiter formation and evolution. 
    more » « less
  5. Abstract We present an updated characterization of the TOI-1685 planetary system, which consists of aPb= 0.69 day ultra-short-period super-Earth planet orbiting a nearby (d= 37.6 pc) M2.5V star (TIC 28900646, 2MASS J04342248+4302148). This planet was previously featured in two contemporaneous discovery papers, but the best-fit planet mass, radius, and bulk density values were discrepant, allowing it to be interpreted either as a hot, bare rock or a 50% H2O/50% MgSiO3water world. TOI-1685 b will be observed in three independent JWST Cycle 2 programs, two of which assume the planet is a water world, while the third assumes that it is a hot rocky planet. Here we include a refined stellar classification with a focus on addressing the host star’s metallicity, an updated planet radius measurement that includes two sectors of TESS data and multicolor photometry from a variety of ground-based facilities, and a more accurate dynamical mass measurement from a combined CARMENES, InfraRed Doppler, and MAROON-X radial velocity data set. We find that the star is very metal-rich ([Fe/H] ≃ +0.3) and that the planet is systematically smaller, lower mass, and higher density than initially reported, with new best-fit parameters ofRpl= 1.468 0.051 + 0.050 RandMpl= 3.03 0.32 + 0.33 M. These results fall in between the previously derived values and suggest that TOI-1685 b is a hot rocky planet with an Earth-like density (ρpl= 5.3 ± 0.8 g cm−3, or 0.96ρ), high equilibrium temperature (Teq= 1062 ± 27 K), and negligible volatiles, rather than a water world. 
    more » « less