skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Special Issues on the Geology and Origin of Lithium Deposits—Introduction: Lithium Deposit Types, Sizes, and Global Distribution
Abstract The importance of lithium for emerging industrial, aerospace, defense, and most significantly, lithium-ion battery technologies, is leading to a rapid increase in the demand for this critical resource. Although current global production of lithium is confined to historically exploited lithium-bearing pegmatites and closed-basin saline brines, new occurrences of these and several nascent types of lithium deposits are under varying stages of active exploration, development, and construction. This includes lithium resources associated with volcano-sedimentary deposits, continental and geothermal brines, and rare element granites. This paper presents an overview of lithium uses, production trends, the different types of lithium deposits, and their sizes, grades, and global distribution, as well as introducing the 24 papers in these two Special Issues of Economic Geology that review these lithium mineral systems and deposits in detail. These contributions include reviews and overviews of major deposit types, regional assessments of lithium provinces, deposit-specific research, and exploration techniques for finding additional resources. It is our hope that the scientific compilation and new insights presented in these two Special Issues of Economic Geology spur innovative thought and research in lithium deposit genesis and exploration to support the sustainable extraction of this critical element.  more » « less
Award ID(s):
2233425 2214119
PAR ID:
10647917
Author(s) / Creator(s):
; ;
Publisher / Repository:
Society of Economic Geologists
Date Published:
Journal Name:
Economic Geology
Volume:
120
Issue:
3
ISSN:
0361-0128
Page Range / eLocation ID:
503 to 511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lithium is an economically important element that is increasingly extracted from brines accumulated in continental basins. While a number of studies have identified silicic magmatic rocks as the ultimate source of dissolved brine lithium, the processes by which Li is mobilized remain poorly constrained. Here we focus on the potential of low-temperature, post-eruptive processes to remove Li from volcanic glass and generate Li-rich fluids. The rhyolitic glasses in this study (from the Yellowstone-Snake River Plain volcanic province in western North America) have interacted with meteoric water emplacement as revealed by textures and a variety of geochemical and isotopic signatures. Indices of glass hydration correlate with Li concentrations, suggesting Li is lost to the water during the water-rock interaction. We estimate the original Li content upon deposition and the magnitude of Li depletion both by direct in situ glass measurements and by applying a partition-coefficient approach to plagioclase Li contents. Across our whole sample set (19 eruptive units spanning ca. 10 m.y.), Li losses average 8.9 ppm, with a maximum loss of 37.5 ppm. This allows estimation of the dense rock equivalent of silicic volcanic lithologies required to potentially source a brine deposit. Our data indicate that surficial processes occurring post-eruption may provide sufficient Li to form economic deposits. We found no relationship between deposit age and Li loss, i.e., hydration does not appear to be an ongoing process. Rather, it occurs primarily while the deposit is cooling shortly after eruption, with δ18O and δD in our case study suggesting a temperature window of 40° to 70°C. 
    more » « less
  2. Critical minerals are essential for sustaining the supply chain necessary for the transition to a carbon-free energy source for society. Copper, nickel, cobalt, lithium, and rare earth elements are particularly in demand for batteries and high-performance magnets used in low-carbon technologies. Copper, predominantly sourced from porphyry deposits, is critical for electricity generation, storage, and distribution. Nickel, which comes from laterite and magmatic sulfide deposits, and cobalt, often a by-product of nickel or copper mining, are core components of batteries that power electric vehicles. Lithium, sourced from pegmatite deposits and continental brines, is another key battery component. Rare earth elements, primarily obtained from carbonatite- and regolith-hosted ion-adsorption deposits, have unique magnetic properties that are key for motor efficiency. Future demand for these elements is expected to increase significantly over the next decades, potentially outpacing expected mine production. Therefore, to ensure a successful energy transition, efforts must prioritize addressing substantial challenges in the supply of critical minerals, particularly the delays in exploring and mining new resources to meet growing demands.▪The energy transition relies on green technologies needing a secure, sustainable supply of critical minerals sourced from ore deposits worldwide.▪Copper, nickel, cobalt, lithium, and rare earth elements are geologically restricted in occurrence, posing challenges for extraction and availability.▪Future demand is expected to surge in the next decades, requiring unprecedented production rates to make the green energy transition viable. 
    more » « less
  3. Gysi, A P; Hurtig, N C; Waters, L (Ed.)
    A major goal of this conference is to tackle the challenges described above and build a new network of scientists and professionals with different expertise, including but not limited to experimental geochemistry/chemistry, thermodynamic/geochemical modeling and databases, reactive mass transport modeling, molecular dynamic simulations, element extraction/separation technologies, theoretical thermodynamics and equations of state, and mineralogy, ore deposits, and processes in natural systems. Another important aspect is the participation of students and training the next generation of leaders in the field of critical minerals and thermodynamics. Participants at this meeting include scientists from academia and national laboratories, graduate and undergraduate students, as well as liaisons from industry, governmental agencies, and geological surveys. This five-day meeting includes daily talks, keynotes, small workshops, discussion sessions, and two evenings of poster sessions for students. One day includes an excursion to the nearby Lemitar Mountains carbonatite rare earth elements deposit to discover the geology of New Mexico and allow participants to link geosciences with other areas of basic energy sciences. We will also organize a geochemical modeling workshop using our “in-house” MINES thermodynamic database (Gysi et al., 2023) to show an application of thermodynamics to modeling critical mineral deposits. 
    more » « less
  4. Critical mineral deposits form through an interplay of magmatic-hydrothermal processes in carbonatites and (per)alkaline systems during their emplacement in the Earth’s crust. Hydrothermal aqueous fluids can lead to the mobilization, transport, and deposition of the rare earth elements (REE) coupled to development of alteration zones at the deposit scale [1]. However, unraveling the underlying processes that affect the solubility of REE in these geologic fluids is a challenge in high temperature and pressure fluids [2]. A holistic approach is key to understand the controls of fluid-rock interaction in mobilizing REE in critical mineral deposits. Through a joint effort, we formed a new U.S. geoscience critical minerals experimental–thermodynamic research hub between New Mexico Tech, Los Alamos National Laboratory and Indiana University. The goal of this project is to conduct frontiers research on the behavior of critical elements in supercritical aqueous fluids by integration of a wide array of high temperature solubility experiments complemented by spectroscopic measurements and molecular dynamic simulations. Here we present current advances to simulate a significant vein paragenesis of barite + fluorite +calcite +bastnäsite-(Ce) observed in many critical mineral deposits. A case study will be presented from the Gallinas Mountains REE-fluorite hydrothermal breccia deposit in New Mexico. Using the GEMS code package [3] and the MINES thermodynamic database (https://geoinfo.nmt.edu/mines-tdb), we highlight our current capabilities and limitations to simulate the behavior of REE in these hydrothermal fluids and minerals. A thermodynamic model is presented to simulate the partitioning of REE between calcite- and fluorite-fluid based on recent and ongoing experimental and thermodynamic work on the synthesis of REE doped minerals [4] and REE speciation in acidic and alkaline fluids. We further show how to integrate multiple experimental datasets and develop new thermodynamic models based on the new research efforts from the research hub and future directions to improve our prediction capabilities of REE complexation in supercritical fluids. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Migdisov et al. (2016), Chemical Geology 439, 13-42. [3] Kulik et al. (2013), Comput Geosci 17, 1–24. [4] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197. 
    more » « less
  5. null (Ed.)
    Iron oxide-copper-gold (IOCG) deposits are major sources of Cu, contain abundant Fe-oxides and may contain Au, Ag, Co, rare earth elements (REE), U and other metals as economically important byproducts in some deposits. They form by hydrothermal processes, but the source of the metals and ore fluid(s) is still debated. We investigated the geochemistry of magnetite from the manto and breccia ore bodies at the Mina Justa IOCG deposit in Peru to assess the source of the iron oxides and their relationship with the economic Cu mineralization. We identified three magnetite types: Type Inclusion (I) is only found in the manto, is the richest in trace elements, and crystallized between 459 - 707 °C; Type Dark (D) has no visible inclusions and formed at around 543 °C; and Type Bright (B) has no inclusions, has the highest Fe content, and formed at around 443 °C. Magnetite samples from Mina Justa yielded an average δ56Fe ± 2σ value of 0.28 ± 0.05‰ (n=9), an average δ18O ± 2σ value 2.19 ± 0.45‰ (n=9), and Δ’17O values that range between -0.075‰ and -0.047‰. Sulfide separates yielded δ65Cu values that range from -0.32‰ to -0.09‰. The trace element compositions and textures of magnetite, along with temperature estimations for magnetite crystallization, are consistent with the manto magnetite belonging to an IOA style mineralization that was overprinted by a younger, structurally-controlled IOCG event that formed the breccia ore body. Altogether, the stable isotopic data fingerprint a magmatic-hydrothermal source for the ore fluids carrying the Fe and Cu at Mina Justa and preclude the input from meteoric water and basinal brines. 
    more » « less