skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Dynamic-Width Speculative Beam Decoding for LLM Inference
Large language models (LLMs) based on transformer architecture have shown outstanding performance across numerous real-world tasks. However, the autoregressive nature of these models makes the inference process slow and costly. Speculative decoding has emerged as a promising solution, leveraging a smaller auxiliary model to draft future tokens, which are then validated simultaneously by the larger model, achieving a speed-up of 1-2x. Although speculative decoding matches the same distribution as multinomial sampling, multinomial sampling itself is prone to suboptimal outputs, where as beam sampling is widely recognized for producing higher-quality results by maintaining multiple candidate sequences at each step.This paper explores the novel integration of speculative decoding with beam sampling. However, there are four key challenges: (1) how to generate multiple sequences from the larger model's distribution given drafts sequences from the small model; (2) how to dynamically optimize the number of beams to balance efficiency and accuracy; (3) how to efficiently verify the multiple drafts in parallel; and (4) how to address the extra memory costs inherent in beam sampling.To address these challenges, we propose dynamic-width speculative beam decoding (DSBD). Specifically, we first introduce a novel draft and verification scheme that generates multiple sequences following the large model's distribution based on beam sampling trajectories from the small model. Then, we introduce an adaptive mechanism to dynamically tune the number of beams based on the context, optimizing efficiency and effectiveness. Besides, we extend tree-based parallel verification to handle multiple trees simultaneously, accelerating the verification process. Finally, we illustrate a simple modification to our algorithm to mitigate the memory overhead of beam sampling.Experimental results show that our approach achieves a 1.5-1.9x speed-up and1.8-2.5x lower energy consumption compared to beam sampling, with no loss in downstream performance. Moreover, it can produce significantly higher-quality outputs than speculative decoding, while maintaining similar time, memory, and energy costs. In summary, our method offers a more efficient and effective inference process for LLMs.  more » « less
Award ID(s):
2211557
PAR ID:
10647942
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
23
ISSN:
2159-5399
Page Range / eLocation ID:
25056 to 25064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large language model (LLM) decoding involves generating a sequence of tokens based on a given context, where each token is predicted one at a time using the model's learned probabilities. The typical autoregressive decoding method requires a separate forward pass through the model for each token generated, which is computationally inefficient and poses challenges for deploying LLMs in latency-sensitive scenarios.The main limitations of current decoding methods stem from their inefficiencies and resource demands. Existing approaches either necessitate fine-tuning smaller models, which is resource-intensive, or relying on fixed retrieval schemes to construct drafts for the next tokens, which lack adaptability and fail to generalize across different models and contexts.To address these issues, we introduce a novel methodology called Adaptix, which accelerates LLM decoding without requiring fine-tuning. Our approach involves an adaptive draft-verification process that evolves over time to improve efficiency. We utilize a tri-gram matrix-based LLM representation to dynamically approximate the output distribution of the LLM, allowing the model to adjust to changing token probabilities during the decoding process. Additionally, we implement a draft construction mechanism that effectively balances exploration and exploitation, ensuring that the drafts generated are both diverse and close to the true output distribution of the LLM.The importance of this design lies in its ability to optimize the draft distribution adaptively, leading to faster and more accurate decoding. Through extensive experiments on various benchmark datasets and LLM architectures, we demonstrate that Adaptix significantly accelerates the decoding process while maintaining high accuracy, making it suitable for deployment in a wide range of practical applications. 
    more » « less
  2. Token-free language models learn directly from raw bytes and remove the inductive bias of subword tokenization. Operating on bytes, however, results in significantly longer sequences. In this setting, standard autoregressive Transformers scale poorly as the effective memory required grows with sequence length. The recent development of the Mamba state space model (SSM) offers an appealing alternative approach with a fixed-sized memory state and efficient decoding. We propose MambaByte, a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences. In terms of modeling, we show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks while maintaining the benefits of token-free language models, such as robustness to noise. In terms of efficiency, we develop an adaptation of speculative decoding with tokenized drafting and byte-level verification. This results in a 2.6× inference speedup to the standard MambaByte implementation, showing similar decoding efficiency as the subword Mamba. These findings establish the viability of SSMs in enabling token-free language modeling. 
    more » « less
  3. One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems. 
    more » « less
  4. Speculative Decoding (SD) enforces strict distributional equivalence to the target model when accepting candidate tokens. While it maintains the target model’s generation quality, this strict equivalence limits the speedup achievable by SD and prevents users from trading deviations from the target distribution in exchange for further inference speed gains. To address these limitations, we introduce Fuzzy Speculative Decoding (FSD) - a decoding algorithm that generalizes SD by accepting candidate tokens based on the divergences between the target and draft model distributions. By allowing for controlled divergence from the target model, FSD enables users to flexibly trade generation quality for inference speed. Across several benchmarks, our method is able to achieve significant runtime improvements of over 5 tokens per second faster than SD at only an approximate 2% absolute reduction in benchmark accuracy. In many cases, FSD is even able to match SD benchmark accuracy at over 2 tokens per second faster, demonstrating that distributional equivalence is not necessary to maintain target model performance. Furthermore, FSD can be seamlessly integrated into existing SD extensions; we demonstrate this by applying FSD to EAGLE-2, greatly enhancing this existing extension’s efficiency while allowing it to leverage FSD’s tunable quality-speed trade-off. 
    more » « less
  5. Lawrence, Neil (Ed.)
    Autoregressive Large Language Models (LLMs) have achieved impressive performance in language tasks but face two significant bottlenecks: (1) quadratic complexity in the attention module as the number of tokens increases, and (2) limited efficiency due to the sequential processing nature of autoregressive LLMs during generation. While linear attention and speculative decoding offer potential solutions, their applicability and synergistic potential for enhancing autoregressive LLMs remain uncertain. We conduct the first comprehensive study on the efficacy of existing linear attention methods for autoregressive LLMs, integrating them with speculative decoding. We introduce an augmentation technique for linear attention that ensures compatibility with speculative decoding, enabling more efficient training and serving of LLMs. Extensive experiments and ablation studies involving seven existing linear attention models and five encoder/decoder-based LLMs consistently validate the effectiveness of our augmented linearized LLMs. Notably, our approach achieves up to a 6.67 reduction in perplexity on the LLaMA model and up to a 2× speedup during generation compared to prior linear attention methods. Codes and models are available at https://github.com/GATECH-EIC/Linearized-LLM. 
    more » « less