Abstract Adding synthetic nucleotides to DNA increases the linear information density of DNA molecules. Here we report that it also can increase the diversity of their three-dimensional folds. Specifically, an additional nucleotide (dZ, with a 5-nitro-6-aminopyridone nucleobase), placed at twelve sites in a 23-nucleotides-long DNA strand, creates a fairly stable unimolecular structure (that is, the folded Z-motif, or fZ-motif) that melts at 66.5 °C at pH 8.5. Spectroscopic, gel and two-dimensional NMR analyses show that the folded Z-motif is held together by six reverse skinny dZ−:dZ base pairs, analogous to the crystal structure of the free heterocycle. Fluorescence tagging shows that the dZ−:dZ pairs join parallel strands in a four-stranded compact down–up–down–up fold. These have two possible structures: one with intercalated dZ−:dZ base pairs, the second without intercalation. The intercalated structure would resemble the i-motif formed by dC:dC+-reversed pairing at pH ≤ 6.5. This fZ-motif may therefore help DNA form compact structures needed for binding and catalysis.
more »
« less
This content will become publicly available on November 6, 2026
Improving the Fidelity of Replication of a Six-Letter DNA Alphabet
The Watson−Crick-Franklin (WCF) rules describing nucleobase pairing in antiparallel strands of DNA and RNA can be exploited to create artificially expanded genetic information systems (AEGIS) with as many as 12 independently replicable nucleotides joined by six hydrogen bond pairing schemes. One of these additional pairs joins two nucleotides trivially designated as Z (6-amino-5-nitro-(1H)-pyridin-2-one) and P (2-amino-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one). The Z:P pair has supported 6- nucleotide PCR to give diagnostics products, in environmental surveillance kits, and for laboratory in vitro evolution (LIVE) that has generated, inter alia, molecules that inactivate toxins, antibody analogs that bind cancer cells, therapeutic candidates that deliver drugs to those cells, reagents to identify targets on those cells’ surfaces, reagents to move cargoes across the blood−brain barrier, and catalysts with ribonuclease activity. However, the Z nucleoside is acidic, with a pKa of ∼7.8. In its deprotonated form, Z− forms a WCF pair with G. This leads to the slow replacement of Z:P pairs by C:G pairs during PCR or, in the reverse process, their introduction. Here, we examine analogs of Z that retain the same donor:donor:acceptor hydrogen bonding pattern as earlier generations of the Z heterocycle, still form a WCF pair with P, but have a higher pKa. Experiments with Taq polymerase show that the rate of loss of Z:P pairs decreases markedly as the pKa of the Z heterocycle increases. This provides direct support for the hypothesis that Z:P pairs are in fact lost via deprotonated Z−:G mismatches. Further, it provides a Z:P system that can be replicated with very high fidelity, with >97% retention of the Z:P pairs over 10,000-fold amplification.
more »
« less
- Award ID(s):
- 2108028
- PAR ID:
- 10648289
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Chemical Biology
- ISSN:
- 1554-8929
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The first structural model of duplex DNA reported in 1953 by Watson & Crick presented the double helix in B-form, the form that genomic DNA exists in much of the time. Thus, artificial DNA seeking to mimic the properties of natural DNA should also be able to adopt B-form. Using a host–guest system in which Moloney murine leukemia virus reverse transcriptase serves as the host and DNA as the guests, we determined high-resolution crystal structures of three complexes including 5′-CTTBPPBBSSZZSAAG, 5′-CTTSSPBZPSZBBAAG and 5′-CTTZZPBSBSZPPAAG with 10 consecutive unnatural nucleobase pairs in B-form within self-complementary 16 bp duplex oligonucleotides. We refer to this ALternative Isoinformational ENgineered (ALIEN) genetic system containing two nucleobase pairs (P:Z, pairing 2-amino-imidazo-[1,2-a]-1,3,5-triazin-(8H)-4-one with 6-amino-5-nitro-(1H)-pyridin-2-one, andB:S, 6-amino-4-hydroxy-5-(1H)-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one) as ALIEN DNA. We characterized both position- and sequence-specific helical, nucleobase pair and dinucleotide step parameters ofP:ZandB:Spairs in the context of B-form DNA. We conclude that ALIEN DNA exhibits structural features that vary with sequence. Further,Zcan participate in alternative stacking modes within a similar sequence context as captured in two different structures. This finding suggests that ALIEN DNA may have a larger repertoire of B-form structures than natural DNA. This article is part of the theme issue ‘Reactivity and mechanism in chemical and synthetic biology’.more » « less
-
Interactions in enzymes between catalytic and neighboring amino acids and how these interactions facilitate catalysis are examined. In examples from both natural and designed enzymes, it is shown that increases in catalytic rates may be achieved through elongation of the buffer range of the catalytic residues; such perturbations in the protonation equilibria are, in turn, achieved through enhanced coupling of the protonation equilibria of the active ionizable residues with those of other ionizable residues. The strongest coupling between protonation states for a pair of residues that deprotonate to form an anion (or a pair that accept a proton to form a cation) is achieved when the difference in the intrinsic pKas of the two residues is approximately within 1 pH unit. Thus, catalytic aspartates and glutamates are often coupled to nearby acidic residues. For an anion-forming residue coupled to a cation-forming residue, the elongated buffer range is achieved when the intrinsic pKa of the anion-forming residue is higher than the intrinsic pKa of the (conjugate acid of the) cation-forming residue. Therefore, the high pKa, anion-forming residues tyrosine and cysteine make good coupling partners for catalytic lysine residues. For the anion–cation pairs, the optimum difference in intrinsic pKas is a function of the energy of interaction between the residues. For the energy of interaction ε expressed in units of (ln 10)RT, the optimum difference in intrinsic pKas is within ∼1 pH unit of ε.more » « less
-
: One horizon in synthetic biology seeks alternative forms of DNA that store, transcribe, and support the evolution of biological information. Here, hydrogen bond donor and acceptor groups are rearranged within a Watson−Crick geometry to get 12 nucleotides that form 6 independently replicating pairs. Such artificially expanded genetic information systems (AEGIS) support Darwinian evolution in vitro. To move AEGIS into living cells, metabolic pathways are next required to make AEGIS triphosphates economically from their nucleosides, eliminating the need to feed these expensive compounds in growth media. We report that “polyphosphate kinases” can be recruited for such pathways, working with natural diphosphate kinases and engineered nucleoside kinases. This pathway in vitro makes AEGIS triphosphates, including third-generation triphosphates having improved ability to survive in living bacterial cells. In α32P-labeled forms, produced here for the first time, they were used to study DNA polymerases, finding cases where third-generation AEGIS triphosphates perform better with natural enzymes than second-generation AEGIS triphosphates.more » « less
-
Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M⊙) and high-mass (5 × 109<M*< 1011M⊙) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3.more » « less
An official website of the United States government
