skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermospheric Neutral Density Data Assimilation System Based on the Whole Atmosphere Model During the November 2003 Storm
The Iterative Driver Estimation and Assimilation (IDEA) data assimilation technique was used with the Whole Atmosphere Model (WAM) to improve neutral density specification in the upper thermosphere. Two different neutral density data sources were examined to enhance the capability of simulating the global thermospheric state. The first were accelerometer estimates of neutral density from the Challenging Mini‐Satellite Payload (CHAMP) satellite. The second were neutral density estimates from the Global Ultraviolet Imager (GUVI) limb‐scan airglow observations aboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite. Due to the intensity of the November 2003 storm, two changes were necessary in WAM. The first was allowing the Kp geomagnetic index to exceed 9 and the second was changing the relationship between Kp and the solar wind parameters used to drive the model. With these changes, results show that IDEA effectively captures the thermospheric neutral density at the CHAMP satellite altitude and follows the time‐dependence through the November 2003 storm period. Furthermore, a cross‐comparison was conducted with the GUVI dayside limb scan measurements. GUVI neutral densities within 270–320 km show the closest agreement with WAM when CHAMP data was assimilated by IDEA. We speculate on the potential for observations from GUVI at 300 km to be used as a data source in the IDEA‐WAM simulations. These simulations demonstrate the utility of the IDEA data assimilation technique with physical models and that using either accelerometer observations or ultraviolet airglow limb measurement during extreme storm periods could be used.  more » « less
Award ID(s):
2028032
PAR ID:
10648470
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Space Weather
Volume:
22
Issue:
10
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To improve Thermosphere–Ionosphere modeling during disturbed conditions, data assimilation schemes that can account for the large and fast-moving gradients moving through the modeled domain are necessary. We argue that this requires a physics based background model with a non-stationary covariance. An added benefit of using physics-based models would be improved forecasting capability over largely persistence-based forecasts of empirical models. As a reference implementation, we have developed an ensemble Kalman Filter (enKF) software called Thermosphere Ionosphere Data Assimilation (TIDA) using the physics-based Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model as the background. In this paper, we present detailed results from experiments during the 2003 Halloween Storm, 27–31 October 2003, under very disturbed ( K p  = 9) conditions while assimilating GRACE-A and B, and CHAMP neutral density measurements. TIDA simulates this disturbed period without using the L1 solar wind measurements, which were contaminated by solar energetic protons, by estimating the model drivers from the density measurements. We also briefly present statistical results for two additional storms: September 27 – October 2, 2002, and July 26 – 30, 2004, to show that the improvement in assimilated neutral density specification is not an artifact of the corrupted forcing observations during the 2003 Halloween Storm. By showing statistical results from assimilating one satellite at a time, we show that TIDA produces a coherent global specification for neutral density throughout the storm – a critical capability in calculating satellite drag and debris collision avoidance for space traffic management. 
    more » « less
  2. Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time. 
    more » « less
  3. Abstract During the second recovery phase of the 13–14 March 2022 storm, intense high‐latitude neutral mass density spikes are detected by satellites at ∼500 km in both hemispheres. These density spikes, accurately modeled by the Global Ionospheric Thermosphere Model (GITM), are identified as high‐latitude neutral mass density anomalies (HDAs). The GITM simulation indicates that these HDAs, which extends over the polar region, are important features in high‐latitude neutral density. Furthermore, GITM reveals that these HDAs are manifestations of transpolar traveling atmospheric disturbances triggered on the dawn side. Moreover, GITM also reveals significant interhemispheric asymmetries (IHAs) in the magnitude, propagation speed, and propagation direction of HDAs, which are linked to the IHAs in the distribution and magnitude of Joule heating deposited as well as the thermospheric background conditions. This study presents a dynamic perspective on the IHA of storm‐time high‐latitude neutral density variations that is particularly helpful to the proper interpretation of satellite observations. 
    more » « less
  4. Abstract Thermospheric density influences the atmospheric drag and is crucial for space missions. This paper introduces a global thermospheric density prediction framework based on a deep evidential method. The proposed framework predicts thermospheric density at the required time and geographic position with given geomagnetic and solar indices. It is called global to differentiate it from existing research that only predicts density along a satellite orbit. Through the deep evidential method, we assimilate data from various sources including solar and geomagnetic conditions, accelerometer‐derived density data, and empirical models including the Jacchia‐Bowman model (JB‐2008) and the Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Extended (NRLMSISE‐00) model. The framework is investigated on five test cases along various satellites from 2003 to 2015 involving geomagnetic storms with Disturbance Storm Time (Dst) values smaller than −50 . Results show that the proposed framework can generate density with higher accuracy than the two empirical models. It can also obtain reliable uncertainty estimations. Global density estimations at altitudes from 200 to 550 km are also presented and compared with empirical models on both quiet and storm conditions. 
    more » « less
  5. Abstract On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites. 
    more » « less