The accumulation of dislocations, which are atomic defects in materials subjected to plastic deformation, can cause structural failures. Early detection of such dislocation-related damage is essential to prevent these failures. The acoustic nonlinearity parameter β has been shown to be sensitive to the nonlinearity of dislocation motions, and prior research has shown a relationship between β and dislocation parameters in various damage mechanisms. While most work thus far reports that β generally increases with increased plastic deformation, recent research showed that β can decrease during monotonic tensile loading in stainless steel 316L characterized by in situ nonlinear ultrasonic measurements. The objective of this research is to examine the correlation between the decrease of β with plastic strain as reported in this recent study, and the initial microstructure and strain hardening rate. The initial microstructure, characterized with electron backscatter diffraction (EBSD), shows an increase in dislocation density and a reduction of grain area, which can possibly result in a decrease in β. Further, it is shown that the decrease rate of β monotonically decreases with hardening rate, providing a evidence that the decrease in β may relate to the shift from planar slip to wavy slip. These results help interpret the underlying mechanisms for the decrease in β during tensile loading.
more »
« less
This content will become publicly available on March 27, 2026
In situ nonlinear ultrasonic characterization of slip irreversibility and material hardening in stainless steel 316L
This work uses in situ nonlinear ultrasound measurements to study the relationship between the acoustic nonlinearity parameter β and the low cycle fatigue behavior of stainless steel 316L. The measured β shows a rapid decrease during hardening followed by a transition to a slower decrease in β as a function of fatigue cycles. Measurements show this trend is consistent at two different strain amplitudes. By comparing our results with prior work on dislocation characterizations in the same material, we hypothesize that the transition in slopes of β coincides with the planar-to-wavy transition that occurs at the end of hardening. Further, measurement results show that the parameter Δβt-c, the difference between β measured after the tension and compression portions of the fatigue cycle, depends on strain amplitude. The dependence of Δβt-c on strain amplitude is related to fatigue life through a power law relationship, similar to slip irreversibility. Overall, the results provided in this work suggest that β correlates with characteristics of low cycle fatigue, and thus supports the idea that in situ NLU measurements can eventually be used as a quantitative measure to predict fatigue life.
more »
« less
- Award ID(s):
- 2015599
- PAR ID:
- 10648579
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- NDT & E International
- Volume:
- 154
- Issue:
- 103401
- ISSN:
- 1879-1174
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
β-titanium (β-Ti) alloys are useful in diverse industries because their mechanical properties can be tuned by transforming the metastable β phase into other metastable and stable phases. Relationships between lattice parameter and β-Ti alloy concentrations have been explored, but the lattice parameter evolution during β-phase transformations is not well understood. In this work, the β-Ti alloys, Ti-11Cr, Ti-11Cr-0.85Fe, Ti-11Cr-5.3Al, and Ti-11Cr-0.85Fe-5.3Al (all in at.%), underwent a 400 °C aging treatment for up to 12 h to induce the β-to-ω and β-to-α phase transformations. Phase identification and lattice parameters were measured in situ using high-temperature X-ray diffraction. Phase compositions were measured ex situ using atom probe tomography. During the phase transformations, Cr and Fe diffused from the ω and α phases into the β matrix, and the β-phase lattice parameter exhibited a corresponding decrease. The decrease in β-phase lattice parameter affected the α- and ω-phase lattice parameters. The α phase in the Fe-free alloys exhibited α-phase c/a ratios close to those of pure Ti. A larger β-phase composition change in Ti-11Cr resulted in larger ω-phase lattice parameter changes than in Ti-11Cr-0.85Fe. This work illuminates the complex relationship between diffusion, composition, and structure for these diffusive/displacive transformations.more » « less
-
null (Ed.)Fatigue-induced damage is one of the most common types of damage experienced by civil engineering structures subjected to cyclic loading such as bridges and rollercoasters. A framework for the analysis of multiaxial fatigue damage using strain rosettes installed on welded connections is proposed. The applicability of this methodology is shown using strain measurements collected in a welded gussetless truss connection of a vertical-lift bridge. Commonly used uniaxial fatigue analysis methods are insufficient in complex structures that experience variable amplitude, multiaxial loading, and non-proportional loading. Strain data with these characteristics are used for the estimation of the number of multiaxial stress reversals induced by in service loads and the number of associated cycles using the rain-flow method. Methods proposed for uniaxial loading and multiaxial non-proportional loading are compared. Results show that non-proportional loading and the accuracy of the critical plane estimation can cause a significant decrease in the estimates of remaining fatigue life. The methodology proposed is anticipated to be used for real-time fatigue prognosis aiming to address critical needs related to maintenance procedures of complex structures, visual inspection techniques and evaluation tools for infrastructure networks.more » « less
-
In this work, a novel optimization approach is introduced to extract combined hardening parameters from the cyclic stress-strain data obtained from the initial hardening cycles of isothermal, low-cycle fatigue tests. The incremental elastic-limit (IEL) concept is proposed due to the often-undiscernible elastic range of a stabilized stress-strain cycle, that increases the complexity of hardening parameters optimization. The optimization process is implemented by taking an iterative search for the elastic range by a fixed elastic limit increment, and the corresponding hardening parameters are obtained using the nonlinear fitting algorithms in the MATLAB™ Software. An implicit stress-update function is introduced to simulate the cyclic stress and strain with a given set of hardening parameters and yield strength. The fitness of the optimization is calculated based on the least square difference between the experimental and simulated stress-strain data. Furthermore, the IEL concept is incorporated to optimize the cyclic hardening parameters. In the final step, finite element (FE) analysis using the optimized hardening parameters is applied to demonstrate the effectiveness of the IEL approach. The proposed methodology is applied to pressure vessel steels and Ni-based weld metals.more » « less
-
Cylindrical specimens of CrCoNi alloy with electropolished surfaces were subjected to constant total strain amplitude low cycle fatigue. The alloy exhibited an initial period of cyclic hardening followed by cyclic softening until failure occurred. At the end of hardening stage at the peak of cyclic stress, well-developed persistent slip markings (PSMs) consisting of extrusions and intrusions were associated with thin deformation twins. A sophisticated experimental workflow was designed to extract information from the surface and the bulk of tested material. A combination of SEM, EBSD, ECCI, FIB and HR-STEM was used to study the internal structure and the surface profiles around the deformation twins, which were produced during the initial period of cyclic loading. Furthermore, localized cyclic plastic strain and stress concentrations near deformation twins led not only to early, well-developed PSMs, but also to the activation of TWIP and TRIP plasticity even at low macroscopic stress amplitudes.more » « less
An official website of the United States government
