skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 2, 2026

Title: Enhancing Water Harvesting Efficiency in a Phosphonate Metal–Organic Framework through Controlled Defect Generation
Global access to drinking water shrinks yearly, yet the atmosphere—our largest sustainable water source—remains largely untapped. Metal–organic frameworks (MOFs), a tunable class of crystalline porous materials, are promising candidates for atmospheric water harvesting. The channel-pore MOF STA-16(Co) stands out due to its robust phosphonate-based structure, which provides high stability and excellent water uptake. However, STA-16(Co) suffers from slow water uptake kinetics. To address this limitation, we introduced defects into STA-16(Co) by selectively removing linkers through treatment with nitrilotriacetic acid, significantly improving water diffusion kinetics. The defective MOFs demonstrate markedly faster water saturation rates—delivering ~50% more water in a 40-minute cycle—while maintaining the same uptake capacity and isothermal behavior as pristine STA-16(Co). Solid-state nuclear magnetic resonance analysis confirms that localized defects enhance efficiency without altering the overall pore geometry. This study presents a straightforward and generalizable strategy to optimize water sorption in channel-based MOFs.  more » « less
Award ID(s):
2119433
PAR ID:
10648728
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Materials Letters
Volume:
7
Issue:
6
ISSN:
2639-4979
Page Range / eLocation ID:
2255 to 2261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water is the most abundant and cleanest natural resource on earth, and it is the driving force of all nature. It not only affects food security, human health, and ecosystem integrity and maintenance, but is also an important driver of energy in industrial production and life. Importantly, water adsorption applications are considered to be highly energy-efficient and environmentally friendly technologies,1 including atmospheric water harvesting,2-4 desiccation of clean gases,5 indoor humidity control,6,7 and adsorptive heat transformation.8,9 However, current water adsorption-related applications are still constrained by properties of adsorbents, such as their low water uptake capacities, poor cyclic stabilities, limited feasibilities over a range of humidity conditions, and minimal commercial availabilities. Conventional nanoporous materials (e.g., silica gels, zeolites, and clays) were the first adsorbents used in water capture applications due to their low cost, commercial availability, and favorable water adsorption kinetics. However, these materials generally suffer from either low water uptake capacities or high regeneration temperature, limiting their use in practical water absorption applications.1,10 Metal-organic frameworks (MOFs), a class of crystalline porous materials, are assembled from inorganic nodes and organic linkers through coordination bonds.11,12 Benefiting from their exceptional porosity and surface area, tunable pore size and geometry, and highly tailorable and designable structures and functionalities, MOFs show considerable potential for gas storage and separation, heterogeneous catalysis, and other energy and environmental sustainability applications.13-17 In recent years, MOFs have also shown great potential for water vapor adsorption because of a growing understanding of the relationship between MOFs and water, as well as an increasing number of reports detailing MOFs that exhibit high water stability.1,4,9 Moreover, judicious design of the MOF structures enables control over their water adsorption properties and the water uptake capacities, which make MOFs ideal candidates for water adsorption-related applications. This review aims to provide an overview of recent advances in the development of MOFs for water adsorption, as well as to offer proposed guidelines to develop even better water adsorption materials. First, we briefly introduce the fundamentals of water adsorption, including how to ascertain key insights based on the shapes of water adsorption isotherms, descriptions of various water adsorption mechanisms, and a discussion on the stability of MOFs in water systems. Next, we discuss several recent reports have detailed how to improve water uptake capacity through the design and synthesis of MOFs. In particular, we highlight the importance of reticular chemistry in the designed synthesis of MOF-based water adsorbent materials. We then shift our focus to discussing the enormous potential of MOFs for use in selective water vapor adsorption applications with both theoretical and practical considerations considered. Finally, we offer our thoughts on the future development of this field in three aspects: chemistry and materials design, process engineering, and commercialization of MOFs for water adsorption. We hope that this review will provide fundamental insights for chemists and inspire them to synthesize MOFs with better water adsorption performance; and provide assistance to engineers researching MOF-based water adsorption devices and working towards the development of highly energy-efficient and environmentally friendly technologies with reduced carbon footprints. 
    more » « less
  2. CO2capture from post-combustion flue gas originating from coal or natural gas power plants, or even from the ambient atmosphere, is a promising strategy to reduce the atmospheric CO2concentration and achieve global decarbonization goals. However, the co-existence of water vapor in these sources presents a significant challenge, as water often competes with CO2for adsorption sites, thereby diminishing the performance of adsorbent materials. Selectively capturing CO2in the presence of moisture is a key goal, as there is a growing demand for materials capable of selectively adsorbing CO2under humid conditions. Among these, metal–organic frameworks (MOFs), a class of porous, highly tunable materials, have attracted extensive interest for gas capture, storage, and separation applications. The numerous combinations of secondary building units and organic linkers offer abundant opportunities for designing systems with enhanced CO2selectivity. Interestingly, some recent studies have demonstrated that interactions between water and CO2within the confined pore space of MOFs can enhance CO2uptake, flipping the traditionally detrimental role of moisture into a beneficial one. These findings introduce a new paradigm: water-enhanced CO2capture in MOFs. In this review, we summarize these recent discoveries, highlighting examples of MOFs that exhibit enhanced CO2adsorption under humid conditions compared to dry conditions. We discuss the underlying mechanisms, design strategies, and structural features that enable this behavior. Finally, we offer a brief perspective on future directions for MOF development in the context of water-enhanced CO2capture. 
    more » « less
  3. Abstract Rising anthropogenic carbon emissions have dire environmental consequences, necessitating remediative approaches, which includes use of solid sorbents. Here, aminopolymers (poly(ethylene imine) (PEI) and poly(propylene imine) (PPI)) are supported within solid mesoporous MIL‐101(Cr) to examine effects of support defect density on aminopolymer‐MOF interactions for CO2uptake and stability during uptake‐regeneration cycles. Using simulated flue gas (10 % CO2in He), MIL‐101(Cr)‐ρhigh(higher defect density) shows 33 % higher uptake capacity per gram adsorbent than MIL‐101(Cr)‐ρlow(lower defect density) at 308 K, consistent with increased availability of undercoordinated Cr adsorption sites at missing linker defects. Increasing aminopolymer weight loadings (10–50 wt.%) within MIL‐101(Cr)‐ρlowand MIL‐101(Cr)‐ρhighincreases amine efficiencies and CO2uptake capacities relative to bare MOFs, though both incur CO2diffusion limitations through confined, viscous polymer phases at higher (40–50 wt.%) loadings. Benchmarked against SBA‐15, lower polymer packing densities (PPI>PEI), weaker and less abundant van der Waals interactions between aminopolymers and pore walls, and open framework topology increase amine efficiencies. Interactions between amines and Cr defect sites incur amine efficiency losses but grant higher thermal and oxidative stability during uptake‐regeneration cycling. Finally, >25 % higher CO2uptake capacities are achieved for aminopolymer/MIL‐101(Cr)‐ρhighunder humid conditions, demonstrating promise for realistic applications. 
    more » « less
  4. Abstract Currently, few porous vanadium metal‐organic frameworks (V‐MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V‐MOFs by presenting an extensible family of V‐MOFs with tailorable pore geometry and properties. The synthesis leverages inter‐modular synergy on a tri‐modular pore‐partitioned platform. New V‐MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. Thec/aratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2g−1. With C2H2/CO2selectivity from 3.3 to 11 and high uptake capacity for C2H2from 65.2 to 182 cm3g−1(298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near‐record high uptake for C2H6(166.8 cm3g−1) contributes to the promise for C2H6‐selective separation of C2H6/C2H4. The multi‐module pore expansion enables transition from C3H6‐selective to more desirable C3H8‐selective separation with extraordinarily high C3H8uptake (254.9 cm3g−1) and high separation potential (1.25 mmol g−1) for C3H8/C3H6(50:50 v/v) mixture. 
    more » « less
  5. The stability of metal–organic frameworks (MOFs) in water affects their ability to function as chemical catalysts, their capacity as adsorbents for separations in water vapor presence, and their usefulness as recyclable water harvesters. Here, we have examined water stability of four node-modified variants of the mesoporous MOF, NU-1000, namely formate-, Acac-, TFacac-, and Facac-NU-1000, comparing these with node-accessible NU-1000. These NU-1000 variants present ligands grafted to NU-1000's hexa-Zr( iv )-oxy nodes by displacing terminal aqua and hydroxo ligands. Facac-NU-1000, containing the most hydrophobic ligands, showed the greatest water stability, being able to undergo at least 20 water adsorption/desorption cycles without loss of water uptake capacity. Computational studies revealed dual salutary functions of installed Facac ligands: (1) enhancement of framework mechanical stability due to electrostatic interactions; and (2) transformation and shielding of the otherwise highly hydrophilic nodes from H-bonding interactions with free water, presumably leading to weaker channel-stressing capillary forces during water evacuation – consistent with trends in free energies of dehydration across the NU-1000 variants. Water harvesting and hydrolysis of chemical warfare agent simulants were examined to gauge the functional consequences of modification and mechanical stabilization of NU-1000 by Facac ligands. The studies revealed a harvesting capacity of ∼1.1 L of water vapor per gram of Facac-NU-1000 per sorption cycle. They also revealed retention of catalytic MOF activity following 20 water uptake and release cycles. This study provides insights into the basis for node-ligand-engendered stabilization of wide-channel MOFs against collapse during water removal. 
    more » « less